Abstract

We demonstrate a silicon electro-optic modulator using a 10-micron-diameter microdisk resonator with a laterally integrated p-i-n diode surrounding essentially the entire microdisk. Our experiments reveal a modulation bandwidth of 510 MHz using a Q ~ 16,900 resonance mode under a square-wave drive voltage of ~0.9 V forward bias and ~-6 V reverse bias.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed and A. P. Knights, Silicon Photonics, (John Wiley, Chichester UK2004).
    [Crossref]
  2. L. Pavesi and D. J. Lockwood (Eds.), Silicon Photonics, (Springer-Verlag, Berlin, Germany2004).
  3. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahibrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
    [Crossref]
  4. A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
    [Crossref]
  5. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
    [Crossref]
  6. I. Kiyat, A. Aydinli, and N. Dagli, “High-Q silicon-on-insulator optical rib waveguide racetrack resonators,” Opt. Express 13, 1900–1905 (2005).
    [Crossref] [PubMed]
  7. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
    [Crossref]
  8. D. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photon. Technol. Lett. 18, 343–345 (2006).
    [Crossref]
  9. D. K. Sparacin, C. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K Gleason, “Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30, 2251–2253 (2005).
    [Crossref] [PubMed]
  10. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
    [Crossref] [PubMed]
  11. T. Indukuri, P. Koonath, and B. Jalali, “Subterranean silicon photonics: demonstration of buried waveguide-coupled microresonators,” Appl. Phys. Lett. 87, 081114 (2005).
    [Crossref]
  12. A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
    [Crossref]
  13. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
    [Crossref]
  14. G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
    [Crossref]
  15. M. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
    [Crossref]
  16. S. Yamagata, T. Kato, and Y. Kokobun, “Non-blocking wavelength channel switch using TO effect of double series-coupled microring resonator,” Electron. Lett. 41, 593–595 (2005).
    [Crossref]
  17. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
    [Crossref]
  18. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon”, IEEE J. Quant. Electron. 23, 123–129 (1987).
    [Crossref]
  19. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
    [Crossref] [PubMed]
  20. C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” J. Lightwave Technol. 24, 1433–1439 (2006).
    [Crossref]
  21. L. Zhou and A. W. Poon, “Silicon-on-insulator tunable waveguide-coupled microdisk resonators with selectively integrated p-i-n diodes,” in Proceedings of Conference on Lasers Electro-Optics, Baltimore, MD (Optical Society of America, Washington, D. C., 2005).
  22. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1305 (2003).
    [Crossref] [PubMed]

2006 (4)

D. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photon. Technol. Lett. 18, 343–345 (2006).
[Crossref]

C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” J. Lightwave Technol. 24, 1433–1439 (2006).
[Crossref]

2005 (9)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

M. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[Crossref]

S. Yamagata, T. Kato, and Y. Kokobun, “Non-blocking wavelength channel switch using TO effect of double series-coupled microring resonator,” Electron. Lett. 41, 593–595 (2005).
[Crossref]

D. K. Sparacin, C. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K Gleason, “Trimming of microring resonators by photo-oxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30, 2251–2253 (2005).
[Crossref] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005).
[Crossref] [PubMed]

T. Indukuri, P. Koonath, and B. Jalali, “Subterranean silicon photonics: demonstration of buried waveguide-coupled microresonators,” Appl. Phys. Lett. 87, 081114 (2005).
[Crossref]

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “High-Q silicon-on-insulator optical rib waveguide racetrack resonators,” Opt. Express 13, 1900–1905 (2005).
[Crossref] [PubMed]

2004 (3)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[Crossref]

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahibrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

2003 (2)

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1305 (2003).
[Crossref] [PubMed]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon”, IEEE J. Quant. Electron. 23, 123–129 (1987).
[Crossref]

Almeida, V. R.

Avrahami, Y.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “High-Q silicon-on-insulator optical rib waveguide racetrack resonators,” Opt. Express 13, 1900–1905 (2005).
[Crossref] [PubMed]

Baets, R.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Barbastathis, G.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon”, IEEE J. Quant. Electron. 23, 123–129 (1987).
[Crossref]

Benyattou, T.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Bolivar, P. H.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahibrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
[Crossref]

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Bontoux, P.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Borselli, M.

Brière, M.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Campenhout, J. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Chao, C. Y.

Cheben, P.

D. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photon. Technol. Lett. 18, 343–345 (2006).
[Crossref]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “High-Q silicon-on-insulator optical rib waveguide racetrack resonators,” Opt. Express 13, 1900–1905 (2005).
[Crossref] [PubMed]

Drouard, E.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Gaffiot, F.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Gleason, K. K

Guo, L. J.

Haus, H. A.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Headley, W. R.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[Crossref]

Henschel, W.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahibrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
[Crossref]

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Hong, C.

Howe, S.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[Crossref]

Indukuri, T.

T. Indukuri, P. Koonath, and B. Jalali, “Subterranean silicon photonics: demonstration of buried waveguide-coupled microresonators,” Appl. Phys. Lett. 87, 081114 (2005).
[Crossref]

Jalali, B.

T. Indukuri, P. Koonath, and B. Jalali, “Subterranean silicon photonics: demonstration of buried waveguide-coupled microresonators,” Appl. Phys. Lett. 87, 081114 (2005).
[Crossref]

Janz, S.

D. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photon. Technol. Lett. 18, 343–345 (2006).
[Crossref]

Johnson, T. J.

Kato, T.

S. Yamagata, T. Kato, and Y. Kokobun, “Non-blocking wavelength channel switch using TO effect of double series-coupled microring resonator,” Electron. Lett. 41, 593–595 (2005).
[Crossref]

Kazmierczak, A.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Kimerling, L. C.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “High-Q silicon-on-insulator optical rib waveguide racetrack resonators,” Opt. Express 13, 1900–1905 (2005).
[Crossref] [PubMed]

Knights, A. P.

G. T. Reed and A. P. Knights, Silicon Photonics, (John Wiley, Chichester UK2004).
[Crossref]

Kokobun, Y.

S. Yamagata, T. Kato, and Y. Kokobun, “Non-blocking wavelength channel switch using TO effect of double series-coupled microring resonator,” Electron. Lett. 41, 593–595 (2005).
[Crossref]

Koonath, P.

T. Indukuri, P. Koonath, and B. Jalali, “Subterranean silicon photonics: demonstration of buried waveguide-coupled microresonators,” Appl. Phys. Lett. 87, 081114 (2005).
[Crossref]

Kurz, H.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahibrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
[Crossref]

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Lee, M. M.

M. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[Crossref]

Letartre, X.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Lipson, M.

Liu, A.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[Crossref]

Lock, J. P.

Lopez-Royo, F.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Manolatou, C.

Michel, J.

Mönster, M.

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Niehusmann, J.

Nielson, G. N.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

O’Connor, I.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Orobtchouk, R.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Painter, O.

Panepucci, R. R.

Paniccia, M.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[Crossref]

Poon, A. W.

L. Zhou and A. W. Poon, “Silicon-on-insulator tunable waveguide-coupled microdisk resonators with selectively integrated p-i-n diodes,” in Proceedings of Conference on Lasers Electro-Optics, Baltimore, MD (Optical Society of America, Washington, D. C., 2005).

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Rakich, P. T.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Reed, G. T.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[Crossref]

G. T. Reed and A. P. Knights, Silicon Photonics, (John Wiley, Chichester UK2004).
[Crossref]

Rojo-Romeo, P.

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Seneviratne, D.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon”, IEEE J. Quant. Electron. 23, 123–129 (1987).
[Crossref]

Sparacin, D. K.

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Thourhout, D. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Tuller, H. L.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Vörckel, A.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahibrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29, 2861–2863 (2004).
[Crossref]

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

Wahibrink, T.

Watts, M. R.

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

Wu, M. C.

M. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[Crossref]

Xu, D.

D. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photon. Technol. Lett. 18, 343–345 (2006).
[Crossref]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Yamagata, S.

S. Yamagata, T. Kato, and Y. Kokobun, “Non-blocking wavelength channel switch using TO effect of double series-coupled microring resonator,” Electron. Lett. 41, 593–595 (2005).
[Crossref]

Zhou, L.

L. Zhou and A. W. Poon, “Silicon-on-insulator tunable waveguide-coupled microdisk resonators with selectively integrated p-i-n diodes,” in Proceedings of Conference on Lasers Electro-Optics, Baltimore, MD (Optical Society of America, Washington, D. C., 2005).

Appl. Phys. Lett. (2)

T. Indukuri, P. Koonath, and B. Jalali, “Subterranean silicon photonics: demonstration of buried waveguide-coupled microresonators,” Appl. Phys. Lett. 87, 081114 (2005).
[Crossref]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, “Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator,” Appl. Phys. Lett. 85, 5523–5525 (2004).
[Crossref]

Electron. Lett. (1)

S. Yamagata, T. Kato, and Y. Kokobun, “Non-blocking wavelength channel switch using TO effect of double series-coupled microring resonator,” Electron. Lett. 41, 593–595 (2005).
[Crossref]

IEEE J. Quant. Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon”, IEEE J. Quant. Electron. 23, 123–129 (1987).
[Crossref]

IEEE Photon. Technol. Lett. (7)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. Lett. 18, 364–366 (2006).
[Crossref]

D. Xu, S. Janz, and P. Cheben, “Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering,” IEEE Photon. Technol. Lett. 18, 343–345 (2006).
[Crossref]

A. Kazmierczak, M. Brière, E. Drouard, P. Bontoux, P. Rojo-Romeo, I. O’Connor, X. Letartre, F. Gaffiot, R. Orobtchouk, and T. Benyattou, “Design, simulation, and characterization of a passive optical add-drop filter in silicon-on-insulator technology,” IEEE Photon. Technol. Lett. 17, 1447–1449 (2005).
[Crossref]

G. N. Nielson, D. Seneviratne, F. Lopez-Royo, P. T. Rakich, Y. Avrahami, M. R. Watts, H. A. Haus, H. L. Tuller, and G. Barbastathis, “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–1192 (2005).
[Crossref]

M. M. Lee and M. C. Wu, “MEMS-actuated microdisk resonators with variable power coupling ratios,” IEEE Photon. Technol. Lett. 17, 1034–1036 (2005).
[Crossref]

A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15, 921–923 (2003).
[Crossref]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16, 1328–1330 (2004).
[Crossref]

J. Lightwave Technol. (2)

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Other (3)

L. Zhou and A. W. Poon, “Silicon-on-insulator tunable waveguide-coupled microdisk resonators with selectively integrated p-i-n diodes,” in Proceedings of Conference on Lasers Electro-Optics, Baltimore, MD (Optical Society of America, Washington, D. C., 2005).

G. T. Reed and A. P. Knights, Silicon Photonics, (John Wiley, Chichester UK2004).
[Crossref]

L. Pavesi and D. J. Lockwood (Eds.), Silicon Photonics, (Springer-Verlag, Berlin, Germany2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of a silicon 10-μm-diameter microdisk resonator-based modulator using a laterally embedded p-i-n diode. The p-i-n diode and a 2-μm-wide trench surround almost the entire microdisk except in the vicinity of the coupled waveguide. Inset: cross-sectional view of the lateral p-i-n diode. The n+-doped region radius is 3.25 μm. The p+-doped region width is 3 μm. The p-i-n diode intrinsic region width is 2.25 μm.

Fig. 2.
Fig. 2.

(a) Optical micrograph of our fabricated p-i-n diode integrated microdisk modulator. (b) Scanning electron micrograph (SEM) of the waveguide-microresonator coupling region. The waveguide width is ~0.35 μm and the gap size is ~0.35 μm. (c) Cross-sectional view SEM of the single-mode waveguide.

Fig. 3.
Fig. 3.

Measured TE-polarized throughput-port spectrum of the microdisk resonator without biasing the p-i-n diode. Inset shows the DC tuning of resonance mode A. Resonance wavelength blueshifts by ~0.06 nm upon a 0.85 V forward bias across the p-i-n diode.

Fig. 4.
Fig. 4.

Measured modulation bandwidths for mode A (open circles) and mode B (solid squares). The driving electrical signal is 0.9 V forward bias and -6.0 V reverse bias. Inset: optical transient responses to a 5-ns input electrical pulse for modes A and B. Mode A: τrise ~ 417 ps and τfall ~1.1 ns, mode B: τrise ~ 850 ps and τfall ~2.1 ns.

Metrics