Abstract

An integrated optical projection display technique utilizing three-color-mixing waveguides and grating-light-valve devices is demonstrated. This new projection display system comprises an optical lens, a microscanner, a grating light valve, and a 3×1 planar waveguide device. The planar waveguide device is fabricated using a SU-8 negative photoresist process, which is suitable material for rapid prototyping of integrated optical circuits. It works as a three-color-mixer and is successfully used for color image generation. The intensity of color for each pixel in the display picture is tuned by groups of movable ribbons comprising a grating light valve and image generating diffraction gratings. This study also demonstrates a surface-micromachined optical scanner using four stress-actuated polysilicon plates to raise a horizontal mirror. The electrostatically-driven mirror can be used for scanning projection display applications. Experimental data show that the optical scanner has a mirror scanning angle up to ±15° using an operating voltage of 25 V. A sub-millisecond switching time (<900 μs) and an optical insertion loss of 0.85 dB is achieved for multi-mode waveguides. The development of the proposed integrated-optical could be promising for an image generation system.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. -P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays applications," IEEE/OSA J.Display Technol. 1, 62-76 (2000).
    [CrossRef]
  2. L. F. Weber, "History of the plasma display panel," IEEE Trans. Plasma Sci. 34, 268-278 (2006).
    [CrossRef]
  3. T. S. Perry, "Tomorrow’s TV - the grating light valve," IEEE Spectrum 41, 38-41 (2004).
    [CrossRef]
  4. P. F. van Kessel, "Electronics for DLPTM technology based projection systems," Symposium on VLSI Circuits Digest of Technical Papers, June 14-16, 91-94, 2001.
  5. K. Hoshino, K. Yamada, K. Matsumoto, and I. Shimoyama, "A diffraction-limited-resolution full-color display with a 10-μm-square visual field," Proc. IEEE MEMS: (MEMS’03), 283-286, Jan. 2003.
  6. J.-P. Ruske, M. Rottschalk, B. Zeitner, V. Grober, and A. Rasch, "Integrated-optical three-colour-mixing device," Electron. Lett. 34, 363-364 (1998).
    [CrossRef]
  7. R. F. Wolffenbuttel, "State-of-the-art in Integrated Optical Microspectrometers," IEEE Trans. Instrum. Meas. 53 (1), 197-202 (2004).
    [CrossRef]
  8. P. Rabiei, W. H. Steier, Cheng Zhang, and L. R. Dalton, "Polymer micro-ring filters and modulators," J. Lightwave Technol. 20, 1968-75 (2002).
    [CrossRef]
  9. J. N. Kuo, G. B. Lee, and W. F. Pan, "Projection Display Technique Utilizing Three-Color-Mixing Waveguides and Micro Scanning Devices," IEEE Photon. Technol. Lett. 17, 217-219 (2005).
    [CrossRef]
  10. J. S. Kim, J. W. Kang, and J. J. Kim, "Simple and Low Cost Fabrication of Thermally Stable Polymeric Multimode Waveguides using a UV-curable Epoxy," Jpn. J. Appl. Phys. 421277-1279 (2003).
    [CrossRef]
  11. B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 23091-94 (2004).
    [CrossRef]
  12. David Koester, Allen Cowen, Ramaswamy Mahadevan, Mark Stonefield, and Busbee Hardy, "PolyMUMPs Design Handbook Revision 10.0," MEMSCAP Inc., Triangle Research Park, NC, USA, 2003.
  13. D. E. Sene, V. M. Bright, J. H. Comtois, and J. W. Grantham, "Polysilicon micromechanical gratings for optical modulation," Sens. Actuator A. 57, 145-151 (1996).
    [CrossRef]

2006

L. F. Weber, "History of the plasma display panel," IEEE Trans. Plasma Sci. 34, 268-278 (2006).
[CrossRef]

2005

J. N. Kuo, G. B. Lee, and W. F. Pan, "Projection Display Technique Utilizing Three-Color-Mixing Waveguides and Micro Scanning Devices," IEEE Photon. Technol. Lett. 17, 217-219 (2005).
[CrossRef]

2004

B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 23091-94 (2004).
[CrossRef]

T. S. Perry, "Tomorrow’s TV - the grating light valve," IEEE Spectrum 41, 38-41 (2004).
[CrossRef]

R. F. Wolffenbuttel, "State-of-the-art in Integrated Optical Microspectrometers," IEEE Trans. Instrum. Meas. 53 (1), 197-202 (2004).
[CrossRef]

2003

J. S. Kim, J. W. Kang, and J. J. Kim, "Simple and Low Cost Fabrication of Thermally Stable Polymeric Multimode Waveguides using a UV-curable Epoxy," Jpn. J. Appl. Phys. 421277-1279 (2003).
[CrossRef]

2002

2000

H. -P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays applications," IEEE/OSA J.Display Technol. 1, 62-76 (2000).
[CrossRef]

1998

J.-P. Ruske, M. Rottschalk, B. Zeitner, V. Grober, and A. Rasch, "Integrated-optical three-colour-mixing device," Electron. Lett. 34, 363-364 (1998).
[CrossRef]

1996

D. E. Sene, V. M. Bright, J. H. Comtois, and J. W. Grantham, "Polysilicon micromechanical gratings for optical modulation," Sens. Actuator A. 57, 145-151 (1996).
[CrossRef]

Beche, B.

B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 23091-94 (2004).
[CrossRef]

Bright, V. M.

D. E. Sene, V. M. Bright, J. H. Comtois, and J. W. Grantham, "Polysilicon micromechanical gratings for optical modulation," Sens. Actuator A. 57, 145-151 (1996).
[CrossRef]

Chien, K. W.

H. -P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays applications," IEEE/OSA J.Display Technol. 1, 62-76 (2000).
[CrossRef]

Comtois, J. H.

D. E. Sene, V. M. Bright, J. H. Comtois, and J. W. Grantham, "Polysilicon micromechanical gratings for optical modulation," Sens. Actuator A. 57, 145-151 (1996).
[CrossRef]

Gaviot, E.

B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 23091-94 (2004).
[CrossRef]

Grantham, J. W.

D. E. Sene, V. M. Bright, J. H. Comtois, and J. W. Grantham, "Polysilicon micromechanical gratings for optical modulation," Sens. Actuator A. 57, 145-151 (1996).
[CrossRef]

Grober, V.

J.-P. Ruske, M. Rottschalk, B. Zeitner, V. Grober, and A. Rasch, "Integrated-optical three-colour-mixing device," Electron. Lett. 34, 363-364 (1998).
[CrossRef]

Huang, Y. P.

H. -P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays applications," IEEE/OSA J.Display Technol. 1, 62-76 (2000).
[CrossRef]

Kang, J. W.

J. S. Kim, J. W. Kang, and J. J. Kim, "Simple and Low Cost Fabrication of Thermally Stable Polymeric Multimode Waveguides using a UV-curable Epoxy," Jpn. J. Appl. Phys. 421277-1279 (2003).
[CrossRef]

Kim, J. J.

J. S. Kim, J. W. Kang, and J. J. Kim, "Simple and Low Cost Fabrication of Thermally Stable Polymeric Multimode Waveguides using a UV-curable Epoxy," Jpn. J. Appl. Phys. 421277-1279 (2003).
[CrossRef]

Kim, J. S.

J. S. Kim, J. W. Kang, and J. J. Kim, "Simple and Low Cost Fabrication of Thermally Stable Polymeric Multimode Waveguides using a UV-curable Epoxy," Jpn. J. Appl. Phys. 421277-1279 (2003).
[CrossRef]

Kuo, J. N.

J. N. Kuo, G. B. Lee, and W. F. Pan, "Projection Display Technique Utilizing Three-Color-Mixing Waveguides and Micro Scanning Devices," IEEE Photon. Technol. Lett. 17, 217-219 (2005).
[CrossRef]

Lee, G. B.

J. N. Kuo, G. B. Lee, and W. F. Pan, "Projection Display Technique Utilizing Three-Color-Mixing Waveguides and Micro Scanning Devices," IEEE Photon. Technol. Lett. 17, 217-219 (2005).
[CrossRef]

Pan, W. F.

J. N. Kuo, G. B. Lee, and W. F. Pan, "Projection Display Technique Utilizing Three-Color-Mixing Waveguides and Micro Scanning Devices," IEEE Photon. Technol. Lett. 17, 217-219 (2005).
[CrossRef]

Pelletier, N.

B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 23091-94 (2004).
[CrossRef]

Perry, T. S.

T. S. Perry, "Tomorrow’s TV - the grating light valve," IEEE Spectrum 41, 38-41 (2004).
[CrossRef]

Rabiei, P.

Rasch, A.

J.-P. Ruske, M. Rottschalk, B. Zeitner, V. Grober, and A. Rasch, "Integrated-optical three-colour-mixing device," Electron. Lett. 34, 363-364 (1998).
[CrossRef]

Rottschalk, M.

J.-P. Ruske, M. Rottschalk, B. Zeitner, V. Grober, and A. Rasch, "Integrated-optical three-colour-mixing device," Electron. Lett. 34, 363-364 (1998).
[CrossRef]

Ruske, J.-P.

J.-P. Ruske, M. Rottschalk, B. Zeitner, V. Grober, and A. Rasch, "Integrated-optical three-colour-mixing device," Electron. Lett. 34, 363-364 (1998).
[CrossRef]

Sene, D. E.

D. E. Sene, V. M. Bright, J. H. Comtois, and J. W. Grantham, "Polysilicon micromechanical gratings for optical modulation," Sens. Actuator A. 57, 145-151 (1996).
[CrossRef]

Shieh, H. -P. D.

H. -P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays applications," IEEE/OSA J.Display Technol. 1, 62-76 (2000).
[CrossRef]

Steier, W. H.

Weber, L. F.

L. F. Weber, "History of the plasma display panel," IEEE Trans. Plasma Sci. 34, 268-278 (2006).
[CrossRef]

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, "State-of-the-art in Integrated Optical Microspectrometers," IEEE Trans. Instrum. Meas. 53 (1), 197-202 (2004).
[CrossRef]

Zeitner, B.

J.-P. Ruske, M. Rottschalk, B. Zeitner, V. Grober, and A. Rasch, "Integrated-optical three-colour-mixing device," Electron. Lett. 34, 363-364 (1998).
[CrossRef]

Zyss, J.

B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 23091-94 (2004).
[CrossRef]

Display Technol.

H. -P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays applications," IEEE/OSA J.Display Technol. 1, 62-76 (2000).
[CrossRef]

Electron. Lett.

J.-P. Ruske, M. Rottschalk, B. Zeitner, V. Grober, and A. Rasch, "Integrated-optical three-colour-mixing device," Electron. Lett. 34, 363-364 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

J. N. Kuo, G. B. Lee, and W. F. Pan, "Projection Display Technique Utilizing Three-Color-Mixing Waveguides and Micro Scanning Devices," IEEE Photon. Technol. Lett. 17, 217-219 (2005).
[CrossRef]

IEEE Spectrum

T. S. Perry, "Tomorrow’s TV - the grating light valve," IEEE Spectrum 41, 38-41 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas.

R. F. Wolffenbuttel, "State-of-the-art in Integrated Optical Microspectrometers," IEEE Trans. Instrum. Meas. 53 (1), 197-202 (2004).
[CrossRef]

IEEE Trans. Plasma Sci.

L. F. Weber, "History of the plasma display panel," IEEE Trans. Plasma Sci. 34, 268-278 (2006).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

J. S. Kim, J. W. Kang, and J. J. Kim, "Simple and Low Cost Fabrication of Thermally Stable Polymeric Multimode Waveguides using a UV-curable Epoxy," Jpn. J. Appl. Phys. 421277-1279 (2003).
[CrossRef]

Opt. Commun.

B. Beche, N. Pelletier, E. Gaviot, and J. Zyss, "Single-mode TE00-TM00 optical waveguides on SU-8 polymer," Opt. Commun. 23091-94 (2004).
[CrossRef]

Sens. Actuator A.

D. E. Sene, V. M. Bright, J. H. Comtois, and J. W. Grantham, "Polysilicon micromechanical gratings for optical modulation," Sens. Actuator A. 57, 145-151 (1996).
[CrossRef]

Other

David Koester, Allen Cowen, Ramaswamy Mahadevan, Mark Stonefield, and Busbee Hardy, "PolyMUMPs Design Handbook Revision 10.0," MEMSCAP Inc., Triangle Research Park, NC, USA, 2003.

P. F. van Kessel, "Electronics for DLPTM technology based projection systems," Symposium on VLSI Circuits Digest of Technical Papers, June 14-16, 91-94, 2001.

K. Hoshino, K. Yamada, K. Matsumoto, and I. Shimoyama, "A diffraction-limited-resolution full-color display with a 10-μm-square visual field," Proc. IEEE MEMS: (MEMS’03), 283-286, Jan. 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic illustration of color image generation using an integrated optical system comprising of three-color-mixing waveguides, a GLV device and a scanning mirror.

Fig. 2.
Fig. 2.

Experimental data for light transmission in 50 and 90 μm thick SU-8 photoresist after hard-baking.

Fig. 3.
Fig. 3.

SEM image of SU-8 waveguide structures. Note that three guide grooves for optical fiber coupling have been fabricated.

Fig. 4.
Fig. 4.

Optical insertion loss of the SU-8 waveguides.

Fig. 5.
Fig. 5.

Measured intensity of the 3×1 planar waveguide color-mixing device. The ratio of blue/green/red light input is 1: 0: 1.

Fig. 6.
Fig. 6.

SEM image of an electrostatically-driven grating light valve (380μm × 240μm) and the corresponding diffraction patterns.

Fig. 7.
Fig. 7.

SEM image of an optical microscanner.

Fig. 8.
Fig. 8.

Scanning image of the microscanner with an exposure of two seconds. (a) The ratio of blue/green/red light is 0: 1: 1 and the scanning inclination is horizontal. (b) The ratio of blue/green/red light is 1: 1: 0 and the scanning inclination is 45°.

Metrics