Abstract

We demonstrate a novel approach for easy fabrication of 3 dimensional (3D) photonic crystals (PhCs) with adjustable surface orientation by introducing a specially designed matching prism into the previously reported single-beam laser holographic lithography. Large area (over 1 cm2) face-centered cubic (fcc) -type microstructures with (111) and (81¯1¯) surface orientations have been produced to demonstrate the capability and feasibility of this method. The reflection and transmission measurement agrees well with the corresponding band structure calculation. This method will open a new approach to study the surface-orientation related phenomena such as negative refraction in 3D PhCs, which is very difficult to be realized by other fabricating techniques.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [Crossref] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [Crossref] [PubMed]
  3. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
    [Crossref]
  4. S. -Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism,” Opt. Lett. 21, 1771–1773 (1996).
    [Crossref] [PubMed]
  5. B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, 1012–1020 (2000).
    [Crossref]
  6. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys.Rev. B 65, 201104–201107 (2002).
    [Crossref]
  7. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
    [Crossref]
  8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
    [Crossref]
  9. L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
    [Crossref]
  10. T. Prasad, V. Colvin, and D. Mittleman, “Superprism phenomenon in three-dimensional macroporous polymer photonic crystals,” Phys. Rev. B 67, 165103–165109 (2003).
    [Crossref]
  11. T. Ochiai and J. Sanchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B 64, 245113–245119 (2001).
    [Crossref]
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
    [Crossref]
  13. D. Chigrin, S. Enoch, C. Sotomayor Torres, and G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express 11, 1203–1211 (2003).
    [Crossref] [PubMed]
  14. J. Witzens and A. Scherer, “Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals,” J. Opt. Soc. Am. A 20, 935–940 (2003).
    [Crossref]
  15. L. J. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: From superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
    [Crossref]
  16. C. Chen, A. Sharkawy, D. Pustai, S. Shi, and D. Prather, “Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides,” Opt. Express 11, 3153–3159 (2003).
    [Crossref] [PubMed]
  17. X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
    [Crossref]
  18. Sanshui Xiao, Min Qiu, Zhichao Ruan, and Sailing He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
    [Crossref]
  19. A. Martinez and J. Martí, “Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination,” Phys. Rev. B 71, 235115–235126 (2005).
    [Crossref]
  20. Emanuel Istrate, Alexander A. Green, and Edward H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B 71, 195122–195128 (2005).
    [Crossref]
  21. W. Jiang, R. T. Chen, and X. J. Lu, “Theory of light refraction at the surface of a photonic crystal,” Phys. Rev. B 71, 245115–245126 (2005).
    [Crossref]
  22. J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609–046620 (2004).
    [Crossref]
  23. J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed crosstalk,” Phys. Rev. E 71, 026604–026612 (2005).
    [Crossref]
  24. Markus Deubel, Martin Wegener, Artan Kaso, and Sajeev John, “Direct laser writing and characterization of ‘slanted pore’ photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
    [Crossref]
  25. Yadong Yin and Younan Xia, “Growth of Large Colloidal Crystals with Their (100) Planes Orientated Parallel to the Surfaces of Supporting Substrates,” Adv. Mater. 14, 605–608 (2002).
    [Crossref]
  26. A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385, 321–324 (1997).
    [Crossref]
  27. A. Van Blaaderen and P. Wiltzius, “Growing large, well-oriented colloidal crystals,” Adv. Mater. 9, 833–835 (1997).
    [Crossref]
  28. K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
    [Crossref] [PubMed]
  29. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
    [Crossref] [PubMed]
  30. S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
    [Crossref]
  31. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
    [Crossref]
  32. X. Wang, C.Y. Ng, W.Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
    [Crossref]
  33. Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
    [Crossref]
  34. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
    [Crossref]
  35. Lijun Wu, Yongchun Zhong, Kam Sing Wong, Guo Ping Wang, and Liang Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115–091117 (2006).
    [Crossref]
  36. Lijun Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102–241104 (2005).
    [Crossref]

2006 (1)

Lijun Wu, Yongchun Zhong, Kam Sing Wong, Guo Ping Wang, and Liang Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115–091117 (2006).
[Crossref]

2005 (5)

Lijun Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102–241104 (2005).
[Crossref]

A. Martinez and J. Martí, “Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination,” Phys. Rev. B 71, 235115–235126 (2005).
[Crossref]

Emanuel Istrate, Alexander A. Green, and Edward H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B 71, 195122–195128 (2005).
[Crossref]

W. Jiang, R. T. Chen, and X. J. Lu, “Theory of light refraction at the surface of a photonic crystal,” Phys. Rev. B 71, 245115–245126 (2005).
[Crossref]

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed crosstalk,” Phys. Rev. E 71, 026604–026612 (2005).
[Crossref]

2004 (3)

Markus Deubel, Martin Wegener, Artan Kaso, and Sajeev John, “Direct laser writing and characterization of ‘slanted pore’ photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609–046620 (2004).
[Crossref]

Sanshui Xiao, Min Qiu, Zhichao Ruan, and Sailing He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[Crossref]

2003 (9)

T. Prasad, V. Colvin, and D. Mittleman, “Superprism phenomenon in three-dimensional macroporous polymer photonic crystals,” Phys. Rev. B 67, 165103–165109 (2003).
[Crossref]

D. Chigrin, S. Enoch, C. Sotomayor Torres, and G. Tayeb, “Self-guiding in two-dimensional photonic crystals,” Opt. Express 11, 1203–1211 (2003).
[Crossref] [PubMed]

J. Witzens and A. Scherer, “Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals,” J. Opt. Soc. Am. A 20, 935–940 (2003).
[Crossref]

L. J. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: From superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
[Crossref]

C. Chen, A. Sharkawy, D. Pustai, S. Shi, and D. Prather, “Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides,” Opt. Express 11, 3153–3159 (2003).
[Crossref] [PubMed]

X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

X. Wang, C.Y. Ng, W.Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[Crossref]

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

2002 (3)

Yadong Yin and Younan Xia, “Growth of Large Colloidal Crystals with Their (100) Planes Orientated Parallel to the Surfaces of Supporting Substrates,” Adv. Mater. 14, 605–608 (2002).
[Crossref]

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[Crossref]

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys.Rev. B 65, 201104–201107 (2002).
[Crossref]

2001 (2)

T. Ochiai and J. Sanchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B 64, 245113–245119 (2001).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

2000 (5)

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[Crossref] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
[Crossref] [PubMed]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[Crossref]

B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” J. Opt. Soc. Am. A 17, 1012–1020 (2000).
[Crossref]

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

1999 (2)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]

1997 (2)

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385, 321–324 (1997).
[Crossref]

A. Van Blaaderen and P. Wiltzius, “Growing large, well-oriented colloidal crystals,” Adv. Mater. 9, 833–835 (1997).
[Crossref]

1996 (1)

1987 (2)

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Baehr-Jones, T.

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed crosstalk,” Phys. Rev. E 71, 026604–026612 (2005).
[Crossref]

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609–046620 (2004).
[Crossref]

Blanco, A.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Busch, K.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
[Crossref] [PubMed]

Chan, C. T.

Lijun Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102–241104 (2005).
[Crossref]

X. Wang, C.Y. Ng, W.Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[Crossref]

Chen, C.

Chen, R. T.

W. Jiang, R. T. Chen, and X. J. Lu, “Theory of light refraction at the surface of a photonic crystal,” Phys. Rev. B 71, 245115–245126 (2005).
[Crossref]

Chen, Y. L.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Chigrin, D.

Colvin, V.

T. Prasad, V. Colvin, and D. Mittleman, “Superprism phenomenon in three-dimensional macroporous polymer photonic crystals,” Phys. Rev. B 67, 165103–165109 (2003).
[Crossref]

Crocker, J. C.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[Crossref] [PubMed]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
[Crossref] [PubMed]

Deubel, M.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Deubel, Markus

Markus Deubel, Martin Wegener, Artan Kaso, and Sajeev John, “Direct laser writing and characterization of ‘slanted pore’ photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

Enkrich, C.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Enoch, S.

Fan, S. H.

X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

Gralak, B.

Green, Alexander A.

Emanuel Istrate, Alexander A. Green, and Edward H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B 71, 195122–195128 (2005).
[Crossref]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
[Crossref] [PubMed]

He, Sailing

Sanshui Xiao, Min Qiu, Zhichao Ruan, and Sailing He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[Crossref]

Hietala, V. M.

Hochberg, M.

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609–046620 (2004).
[Crossref]

Istrate, Emanuel

Emanuel Istrate, Alexander A. Green, and Edward H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B 71, 195122–195128 (2005).
[Crossref]

Jiang, W.

W. Jiang, R. T. Chen, and X. J. Lu, “Theory of light refraction at the surface of a photonic crystal,” Phys. Rev. B 71, 245115–245126 (2005).
[Crossref]

Joannopoulos, J. D.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys.Rev. B 65, 201104–201107 (2002).
[Crossref]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

John, Sajeev

Markus Deubel, Martin Wegener, Artan Kaso, and Sajeev John, “Direct laser writing and characterization of ‘slanted pore’ photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

Johnson, S. G.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys.Rev. B 65, 201104–201107 (2002).
[Crossref]

Jones, E. D.

Juodkazis, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

Karle, T.

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[Crossref]

Kaso, Artan

Markus Deubel, Martin Wegener, Artan Kaso, and Sajeev John, “Direct laser writing and characterization of ‘slanted pore’ photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]

Kawata, S.

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[Crossref]

Koch, W.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]

Krauss, T. F.

L. J. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: From superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
[Crossref]

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[Crossref]

Lin, K. H.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[Crossref] [PubMed]

Lin, S. -Y.

Lu, X. J.

W. Jiang, R. T. Chen, and X. J. Lu, “Theory of light refraction at the surface of a photonic crystal,” Phys. Rev. B 71, 245115–245126 (2005).
[Crossref]

Lubensky, T. C.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[Crossref] [PubMed]

Luo, C.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys.Rev. B 65, 201104–201107 (2002).
[Crossref]

Martí, J.

A. Martinez and J. Martí, “Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination,” Phys. Rev. B 71, 235115–235126 (2005).
[Crossref]

Martinez, A.

A. Martinez and J. Martí, “Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination,” Phys. Rev. B 71, 235115–235126 (2005).
[Crossref]

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

Mazilu, M.

L. J. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: From superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
[Crossref]

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[Crossref]

Meisel, D. C.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Miklyaev, Yu. V.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Misawa, H.

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

Mittleman, D.

T. Prasad, V. Colvin, and D. Mittleman, “Superprism phenomenon in three-dimensional macroporous polymer photonic crystals,” Phys. Rev. B 67, 165103–165109 (2003).
[Crossref]

Ng, C.Y.

X. Wang, C.Y. Ng, W.Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[Crossref]

Notomi, M.

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]

Ochiai, T.

T. Ochiai and J. Sanchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B 64, 245113–245119 (2001).
[Crossref]

Pang, Y. K.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Pendry, J. B.

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys.Rev. B 65, 201104–201107 (2002).
[Crossref]

Ping Wang, Guo

Lijun Wu, Yongchun Zhong, Kam Sing Wong, Guo Ping Wang, and Liang Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115–091117 (2006).
[Crossref]

Prasad, T.

T. Prasad, V. Colvin, and D. Mittleman, “Superprism phenomenon in three-dimensional macroporous polymer photonic crystals,” Phys. Rev. B 67, 165103–165109 (2003).
[Crossref]

Prasad, V.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[Crossref] [PubMed]

Prather, D.

Pustai, D.

Qiu, Min

Sanshui Xiao, Min Qiu, Zhichao Ruan, and Sailing He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[Crossref]

Ruan, Zhichao

Sanshui Xiao, Min Qiu, Zhichao Ruan, and Sailing He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[Crossref]

Ruel, R.

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385, 321–324 (1997).
[Crossref]

Sanchez-Dehesa, J.

T. Ochiai and J. Sanchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B 64, 245113–245119 (2001).
[Crossref]

Sargent, Edward H.

Emanuel Istrate, Alexander A. Green, and Edward H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B 71, 195122–195128 (2005).
[Crossref]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]

Scherer, A.

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed crosstalk,” Phys. Rev. E 71, 026604–026612 (2005).
[Crossref]

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609–046620 (2004).
[Crossref]

J. Witzens and A. Scherer, “Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals,” J. Opt. Soc. Am. A 20, 935–940 (2003).
[Crossref]

Schofield, A.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[Crossref] [PubMed]

Sharkawy, A.

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
[Crossref] [PubMed]

Sheng, P.

X. Wang, C.Y. Ng, W.Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[Crossref]

Shi, S.

Shoji, S.

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[Crossref]

Sing Wong, Kam

Lijun Wu, Yongchun Zhong, Kam Sing Wong, Guo Ping Wang, and Liang Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115–091117 (2006).
[Crossref]

Sotomayor Torres, C.

Su, H. M.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Tam, W. Y.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Tam, W.Y.

X. Wang, C.Y. Ng, W.Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[Crossref]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]

Tayeb, G.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
[Crossref] [PubMed]

Van Blaaderen, A.

A. Van Blaaderen and P. Wiltzius, “Growing large, well-oriented colloidal crystals,” Adv. Mater. 9, 833–835 (1997).
[Crossref]

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385, 321–324 (1997).
[Crossref]

von Freymann, G.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Wang, G. P.

Lijun Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102–241104 (2005).
[Crossref]

Wang, H. Z.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Wang, L.

Wang, X.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

X. Wang, C.Y. Ng, W.Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[Crossref]

Wegener, M.

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

Wegener, Martin

Markus Deubel, Martin Wegener, Artan Kaso, and Sajeev John, “Direct laser writing and characterization of ‘slanted pore’ photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

Weitz, D. A.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[Crossref] [PubMed]

Wiltzius, P.

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385, 321–324 (1997).
[Crossref]

A. Van Blaaderen and P. Wiltzius, “Growing large, well-oriented colloidal crystals,” Adv. Mater. 9, 833–835 (1997).
[Crossref]

Witzens, J.

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed crosstalk,” Phys. Rev. E 71, 026604–026612 (2005).
[Crossref]

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609–046620 (2004).
[Crossref]

J. Witzens and A. Scherer, “Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals,” J. Opt. Soc. Am. A 20, 935–940 (2003).
[Crossref]

Wong, K. S.

Lijun Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102–241104 (2005).
[Crossref]

Wu, L. J.

L. J. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: From superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003).
[Crossref]

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[Crossref]

Wu, Lijun

Lijun Wu, Yongchun Zhong, Kam Sing Wong, Guo Ping Wang, and Liang Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115–091117 (2006).
[Crossref]

Lijun Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102–241104 (2005).
[Crossref]

Xia, Younan

Yadong Yin and Younan Xia, “Growth of Large Colloidal Crystals with Their (100) Planes Orientated Parallel to the Surfaces of Supporting Substrates,” Adv. Mater. 14, 605–608 (2002).
[Crossref]

Xiao, Sanshui

Sanshui Xiao, Min Qiu, Zhichao Ruan, and Sailing He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[Crossref]

Xu, J. F.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

Yin, Yadong

Yadong Yin and Younan Xia, “Growth of Large Colloidal Crystals with Their (100) Planes Orientated Parallel to the Surfaces of Supporting Substrates,” Adv. Mater. 14, 605–608 (2002).
[Crossref]

Yodh, A. G.

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[Crossref] [PubMed]

Yu, X. F.

X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

Yuan, Liang

Lijun Wu, Yongchun Zhong, Kam Sing Wong, Guo Ping Wang, and Liang Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115–091117 (2006).
[Crossref]

Zeng, Z. H.

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Zhong, Y. C.

Lijun Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102–241104 (2005).
[Crossref]

Zhong, Yongchun

Lijun Wu, Yongchun Zhong, Kam Sing Wong, Guo Ping Wang, and Liang Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115–091117 (2006).
[Crossref]

Adv. Mater. (3)

Yadong Yin and Younan Xia, “Growth of Large Colloidal Crystals with Their (100) Planes Orientated Parallel to the Surfaces of Supporting Substrates,” Adv. Mater. 14, 605–608 (2002).
[Crossref]

A. Van Blaaderen and P. Wiltzius, “Growing large, well-oriented colloidal crystals,” Adv. Mater. 9, 833–835 (1997).
[Crossref]

X. Wang, C.Y. Ng, W.Y. Tam, C. T. Chan, and P. Sheng, “Large-area two-dimensional mesoscale quasi-crystals,” Adv. Mater. 15, 1526–1528 (2003).
[Crossref]

Appl. Phys. Lett. (11)

Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).
[Crossref]

X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang, and W. Y. Tam, “Three-dimensional photonic crystals fabricated by visible light holographic lithography,” Appl. Phys. Lett. 82, 2212–2214 (2003).
[Crossref]

Lijun Wu, Yongchun Zhong, Kam Sing Wong, Guo Ping Wang, and Liang Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115–091117 (2006).
[Crossref]

Lijun Wu, Y. C. Zhong, C. T. Chan, K. S. Wong, and G. P. Wang, “Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography,” Appl. Phys. Lett. 86, 241102–241104 (2005).
[Crossref]

Markus Deubel, Martin Wegener, Artan Kaso, and Sajeev John, “Direct laser writing and characterization of ‘slanted pore’ photonic crystals,” Appl. Phys. Lett. 85, 1895–1897 (2004).
[Crossref]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001).
[Crossref]

X. F. Yu and S. H. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003).
[Crossref]

Sanshui Xiao, Min Qiu, Zhichao Ruan, and Sailing He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269–4271 (2004).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, “Superprism phenomena in planar photonic crystals,” IEEE J. Quantum Electron. 38, 915–918 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Nature (2)

A. van Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385, 321–324 (1997).
[Crossref]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53 (2000).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (7)

M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Phys. Rev. B 62, 10696–10705 (2000).
[Crossref]

T. Prasad, V. Colvin, and D. Mittleman, “Superprism phenomenon in three-dimensional macroporous polymer photonic crystals,” Phys. Rev. B 67, 165103–165109 (2003).
[Crossref]

T. Ochiai and J. Sanchez-Dehesa, “Superprism effect in opal-based photonic crystals,” Phys. Rev. B 64, 245113–245119 (2001).
[Crossref]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096–R10099 (1998).
[Crossref]

A. Martinez and J. Martí, “Negative refraction in two-dimensional photonic crystals: Role of lattice orientation and interface termination,” Phys. Rev. B 71, 235115–235126 (2005).
[Crossref]

Emanuel Istrate, Alexander A. Green, and Edward H. Sargent, “Behavior of light at photonic crystal interfaces,” Phys. Rev. B 71, 195122–195128 (2005).
[Crossref]

W. Jiang, R. T. Chen, and X. J. Lu, “Theory of light refraction at the surface of a photonic crystal,” Phys. Rev. B 71, 245115–245126 (2005).
[Crossref]

Phys. Rev. E (2)

J. Witzens, M. Hochberg, T. Baehr-Jones, and A. Scherer, “Mode matching interface for efficient coupling of light into planar photonic crystals,” Phys. Rev. E 69, 046609–046620 (2004).
[Crossref]

J. Witzens, T. Baehr-Jones, and A. Scherer, “Hybrid superprism with low insertion losses and suppressed crosstalk,” Phys. Rev. E 71, 026604–026612 (2005).
[Crossref]

Phys. Rev. Lett. (3)

K. H. Lin, J. C. Crocker, V. Prasad, A. Schofield, D. A. Weitz, T. C. Lubensky, and A. G. Yodh, “Entropically Driven Colloidal Crystallization on Patterned Surfaces,” Phys. Rev. Lett. 85, 1770–1773 (2000).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[Crossref] [PubMed]

Phys.Rev. B (1)

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index,” Phys.Rev. B 65, 201104–201107 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Projection of the beam configuration, reproduced on the k1 and k4 plane, to fabricate the (111)-oriented fcc-type PhCs. (b) shows the scanning electron microscopy (SEM) images of PhC structures generated by the beam configuration of Fig. 1(a). The figure inset is the cross section of the sample, where the solid line shows the surface of the sample and the dash dot line shows the [111] direction of the sample. (c) shows the computer simulation of the Fig. 1(b).

Fig. 2.
Fig. 2.

(a) Projection of the beam configuration, reproduced on the k1 and k4 plane, to fabricate the (81¯1¯) -oriented fcc-type PhCs. The cut-off angle of the prism a is 30°. (b) and (c) shows the SEM images of PhC structures generated by the beam configuration of Fig. 2(a). The figure inset is the cross section of the sample, where the solid line shows the surface of the sample and the dash dot line shows the [111] direction of the sample. (d) shows the computer simulation of the Fig. 2(c).

Fig. 3.
Fig. 3.

(a) Optical intensity reflection spectrum of the (lll)-oriented fcc-type photoresist template in Fig. 1 (b) along the (111) direction (Γ-T), showing two pronounced peaks around 2.54 μm and 1.32 μm. (b) Corresponding band-structure calculation of the (lll)-oriented fcc-type photoresist template in Fig. 1 (b) along the (111) direction (Γ-T). (c) Corresponding band-structure calculation of the (81¯1¯)-oriented fcc-type photoresist template in Fig. 2 (c) along the [81¯1¯] direction (r-Z). The gray shaded area corresponds to the direction measured. (d) Optical intensity reflection spectrum of the (81¯1¯) -oriented fcc-type photoresist template in Fig. 2 (c) along the [81¯1¯] direction (Γ-Z), showing two pronounced peaks around 2.45 μm and 1.45 μm. For comparing the two reflections, (a) and (d) have been shifted to align the higher energy peaks position.

Metrics