Abstract

Plasmon-resonant gold nanorods are demonstrated as low back-scattering albedo contrast agents for optical coherence tomography (OCT). We define the backscattering albedo, a′, as the ratio of the backscattering to extinction coefficient. Contrast agents which modify a′ within the host tissue phantoms are detected with greater sensitivity by the differential OCT measurement of both a′ and extinction. Optimum sensitivity is achieved by maximizing the difference between contrast agents and tissue, |a′ca - a′tiss|. Low backscattering albedo gold nanorods (14 × 44 nm; λmax = 780 nm) within a high backscattering albedo tissue phantom with an uncertainty in concentration of 20% (randomized 2±0.4% intralipid) were readily detected at 82 ppm (by weight) in a regime where extinction alone could not discriminate nanorods. The estimated threshold of detection was 30 ppm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref] [PubMed]
  2. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208-1-14 (2005).
    [Crossref]
  3. U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [Crossref]
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [Crossref] [PubMed]
  5. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Molecular contrast in optical coherence tomography by use of a pump-probe technique,” Opt. Lett. 28, 340–341 (2003).
    [Crossref] [PubMed]
  6. D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905- 1-4 (2004).
    [Crossref] [PubMed]
  7. J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52–S55 (2002).
    [Crossref] [PubMed]
  8. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546–1548 (2003).
    [Crossref] [PubMed]
  9. C. Xu, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett. 29, 1647–1649 (2004).
    [Crossref] [PubMed]
  10. C. Yang, L. E. L. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent,” Opt. Lett. 29, 2016–2018 (2004).
    [Crossref] [PubMed]
  11. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005). http://www.opticsexpress.org/abstract.cfm?id=85327.
    [Crossref] [PubMed]
  12. Y. Zhao, B. Sadtler, M. Lin, G. H. Hockerman, and A. Wei, “Nanoprobe implantation into mammalian cells by cationic transfection,” Chem. Commun. pp. 784-785 (2004).
  13. E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1, 325–327 (2005).
    [Crossref]
  14. H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods sing phosphatidylcholine to reduce cytotoxicity,” Langmuir 22, 2–5 (2006).
    [Crossref]
  15. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
    [Crossref]
  16. C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
    [PubMed]
  17. J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
    [Crossref]
  18. K. Chen, Y. Liu, G. Ameer, and V. Backman, “Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels,” J. Biomed. Opt. 10, 024005-1-6 (2005).
    [Crossref] [PubMed]
  19. H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048–3050 (2005).
    [Crossref] [PubMed]
  20. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262, 137–156 (1998).
    [Crossref] [PubMed]
  21. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a unction of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
    [Crossref]
  22. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
    [Crossref] [PubMed]
  23. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applicatons,” Coord. Chem. Rev. 249, 1870–1901 (2005).
    [Crossref]
  24. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
    [Crossref] [PubMed]
  25. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
    [Crossref] [PubMed]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, pp. 141–154 (John Wiley and Sons, 1983).
  27. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42, 3027–3037 (2003).
    [Crossref] [PubMed]
  28. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, J. Valanciunaite, J. Swartling, S. Andersson-Engels, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004). http://www.opticsexpress.org/abstract.cfm?id=78584.
    [Crossref] [PubMed]
  29. L. Thrane, M. H. Frosz, T. M. Jorgensen, A. Tycho, H. T. Yura, and P. E. Andersen, “Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures,” Opt. Lett. 29, 1641–1643 (2004).
    [Crossref] [PubMed]
  30. D. J. Faber, F. J. van der Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004). http://www.opticsexpress.org/abstract.cfm?id=81159.
    [Crossref] [PubMed]
  31. J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
    [Crossref] [PubMed]
  32. W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [Crossref]
  33. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
    [Crossref] [PubMed]
  34. J. W. Pickering, S. A. Prahl, N. van Wieringer, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [Crossref] [PubMed]
  35. A. L. Oldenburg, D. A. Zweifel, C. Xu, A. Wei, and S. A. Boppart, “Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system,” in Proceedings of SPIE: Plasmonics in biology and medicine II, vol. 5703, pp. 50–60 (2005).
  36. G. Zaccanti, S. D. Bianco, and F. Marelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003).
    [Crossref] [PubMed]
  37. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
    [Crossref]
  38. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal, pp. 572-574 (Cambridge University Press, 1989).
  39. D. A. Zweifel and A. Wei, “Sulfide-arrested growth of gold nanorods,” Chem. Mater. 17, 4256–4261 (2005).
    [Crossref]
  40. A. Nel, T. Xia, L. Madler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311, 622–627 (2006).
    [Crossref] [PubMed]
  41. J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
    [Crossref] [PubMed]
  42. M. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
    [Crossref]
  43. B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectrosocpic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004). http://www.opticsexpress.org/abstract.cfm?id=79601.
    [Crossref] [PubMed]
  44. C.-H. Chou, C.-D. Chen, and C. R. C. Wang, “Highly efficient, wavelength-tunable, gold nanoparitcle based optothermal nanoconvertors,” J. Phys. Chem. B 109, 11135–11138 (2005).
    [Crossref]
  45. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
    [Crossref] [PubMed]
  46. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
    [Crossref] [PubMed]
  47. T. B. Huff, M. H. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei, “CTAB-mediated cell uptake of gold nanorods,” Manuscript submitted (2006).
  48. H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17, 4636–4641 (2005).
    [Crossref]
  49. Y. Zhao, W. Perez-Segarra, Q. Shi, and A. Wei, “Dithiocarbamate assembly on gold,” J. Am. Chem. Soc. 127, 7328–7329 (2005).
    [Crossref] [PubMed]

2006 (3)

H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods sing phosphatidylcholine to reduce cytotoxicity,” Langmuir 22, 2–5 (2006).
[Crossref]

A. Nel, T. Xia, L. Madler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311, 622–627 (2006).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

2005 (14)

H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17, 4636–4641 (2005).
[Crossref]

Y. Zhao, W. Perez-Segarra, Q. Shi, and A. Wei, “Dithiocarbamate assembly on gold,” J. Am. Chem. Soc. 127, 7328–7329 (2005).
[Crossref] [PubMed]

D. A. Zweifel and A. Wei, “Sulfide-arrested growth of gold nanorods,” Chem. Mater. 17, 4256–4261 (2005).
[Crossref]

M. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
[Crossref]

C.-H. Chou, C.-D. Chen, and C. R. C. Wang, “Highly efficient, wavelength-tunable, gold nanoparitcle based optothermal nanoconvertors,” J. Phys. Chem. B 109, 11135–11138 (2005).
[Crossref]

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[Crossref] [PubMed]

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applicatons,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
[Crossref] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208-1-14 (2005).
[Crossref]

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005). http://www.opticsexpress.org/abstract.cfm?id=85327.
[Crossref] [PubMed]

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1, 325–327 (2005).
[Crossref]

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

K. Chen, Y. Liu, G. Ameer, and V. Backman, “Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels,” J. Biomed. Opt. 10, 024005-1-6 (2005).
[Crossref] [PubMed]

H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048–3050 (2005).
[Crossref] [PubMed]

2004 (9)

Y. Zhao, B. Sadtler, M. Lin, G. H. Hockerman, and A. Wei, “Nanoprobe implantation into mammalian cells by cationic transfection,” Chem. Commun. pp. 784-785 (2004).

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905- 1-4 (2004).
[Crossref] [PubMed]

C. Xu, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett. 29, 1647–1649 (2004).
[Crossref] [PubMed]

C. Yang, L. E. L. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent,” Opt. Lett. 29, 2016–2018 (2004).
[Crossref] [PubMed]

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, J. Valanciunaite, J. Swartling, S. Andersson-Engels, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12, 249–259 (2004). http://www.opticsexpress.org/abstract.cfm?id=78584.
[Crossref] [PubMed]

L. Thrane, M. H. Frosz, T. M. Jorgensen, A. Tycho, H. T. Yura, and P. E. Andersen, “Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures,” Opt. Lett. 29, 1641–1643 (2004).
[Crossref] [PubMed]

D. J. Faber, F. J. van der Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004). http://www.opticsexpress.org/abstract.cfm?id=81159.
[Crossref] [PubMed]

B. Hermann, K. Bizheva, A. Unterhuber, B. Povazay, H. Sattmann, L. Schmetterer, A. F. Fercher, and W. Drexler, “Precision of extracting absorption profiles from weakly scattering media with spectrosocpic time-domain optical coherence tomography,” Opt. Express 12, 1677–1688 (2004). http://www.opticsexpress.org/abstract.cfm?id=79601.
[Crossref] [PubMed]

2003 (6)

2002 (2)

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52–S55 (2002).
[Crossref] [PubMed]

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
[Crossref] [PubMed]

2001 (1)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[Crossref] [PubMed]

2000 (1)

1999 (1)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a unction of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

1998 (2)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262, 137–156 (1998).
[Crossref] [PubMed]

1997 (1)

1994 (1)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[Crossref] [PubMed]

1993 (2)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

1990 (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Aalders, M. C.

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
[Crossref]

Aalders, M. C. G.

Ameer, G.

K. Chen, Y. Liu, G. Ameer, and V. Backman, “Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels,” J. Biomed. Opt. 10, 024005-1-6 (2005).
[Crossref] [PubMed]

Andersen, C. B.

Andersen, P. E.

Andersson-Engels, S.

Applegate, B. E.

Au, L.

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

Backman, V.

K. Chen, Y. Liu, G. Ameer, and V. Backman, “Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels,” J. Biomed. Opt. 10, 024005-1-6 (2005).
[Crossref] [PubMed]

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Barton, J.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Barton, J. K.

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52–S55 (2002).
[Crossref] [PubMed]

Beek, J. F.

Bianco, S. D.

Bizheva, K.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, pp. 141–154 (John Wiley and Sons, 1983).

Bonner, R. F.

Boppart, S. A.

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005). http://www.opticsexpress.org/abstract.cfm?id=85327.
[Crossref] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208-1-14 (2005).
[Crossref]

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905- 1-4 (2004).
[Crossref] [PubMed]

C. Xu, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett. 29, 1647–1649 (2004).
[Crossref] [PubMed]

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546–1548 (2003).
[Crossref] [PubMed]

A. L. Oldenburg, D. A. Zweifel, C. Xu, A. Wei, and S. A. Boppart, “Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system,” in Proceedings of SPIE: Plasmonics in biology and medicine II, vol. 5703, pp. 50–60 (2005).

Burda, C.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[Crossref] [PubMed]

Campbell, D.

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

Cang, H.

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048–3050 (2005).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Chen, C.-D.

C.-H. Chou, C.-D. Chen, and C. R. C. Wang, “Highly efficient, wavelength-tunable, gold nanoparitcle based optothermal nanoconvertors,” J. Phys. Chem. B 109, 11135–11138 (2005).
[Crossref]

Chen, J.

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048–3050 (2005).
[Crossref] [PubMed]

Chen, K.

K. Chen, Y. Liu, G. Ameer, and V. Backman, “Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels,” J. Biomed. Opt. 10, 024005-1-6 (2005).
[Crossref] [PubMed]

Chen, X.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[Crossref] [PubMed]

Cheng, J.-X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
[Crossref] [PubMed]

T. B. Huff, M. H. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei, “CTAB-mediated cell uptake of gold nanorods,” Manuscript submitted (2006).

Cheong, W.-F.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

Choma, M. A.

Chou, C.-H.

C.-H. Chou, C.-D. Chen, and C. R. C. Wang, “Highly efficient, wavelength-tunable, gold nanoparitcle based optothermal nanoconvertors,” J. Phys. Chem. B 109, 11135–11138 (2005).
[Crossref]

Connor, E. E.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1, 325–327 (2005).
[Crossref]

de Boer, J. F.

Drexler, W.

Drezek, R.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Eckhaus, M. A.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[Crossref] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[Crossref] [PubMed]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a unction of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Esenaliev, R. O.

Faber, D. J.

D. J. Faber, F. J. van der Meer, and M. C. G. Aalders, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12, 4353–4365 (2004). http://www.opticsexpress.org/abstract.cfm?id=81159.
[Crossref] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
[Crossref]

Feldmann, J.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
[Crossref] [PubMed]

Fercher, A. F.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal, pp. 572-574 (Cambridge University Press, 1989).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Franzl, T.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
[Crossref] [PubMed]

Frosz, M. H.

Fujimoto, J. G.

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Gole, A.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1, 325–327 (2005).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Guyot-Sionnest, P.

M. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
[Crossref]

Hafner, J. H.

H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17, 4636–4641 (2005).
[Crossref]

Halas, N.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Halas, N. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

Hansen, M. H.

T. B. Huff, M. H. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei, “CTAB-mediated cell uptake of gold nanorods,” Manuscript submitted (2006).

Hansen, P. R.

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Hermann, B.

Hirsch, L.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Hockerman, G. H.

Y. Zhao, B. Sadtler, M. Lin, G. H. Hockerman, and A. Wei, “Nanoprobe implantation into mammalian cells by cationic transfection,” Chem. Commun. pp. 784-785 (2004).

Hoying, J. B.

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52–S55 (2002).
[Crossref] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
[Crossref] [PubMed]

T. B. Huff, M. H. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei, “CTAB-mediated cell uptake of gold nanorods,” Manuscript submitted (2006).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, pp. 141–154 (John Wiley and Sons, 1983).

Ippen, E. P.

Izatt, J. A.

Jorgensen, T. M.

Kaneko, K.

H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods sing phosphatidylcholine to reduce cytotoxicity,” Langmuir 22, 2–5 (2006).
[Crossref]

Kartner, F. X.

Kawasaki, H.

H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods sing phosphatidylcholine to reduce cytotoxicity,” Langmuir 22, 2–5 (2006).
[Crossref]

Kholodnykh, A. I.

Knuttel, A.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[Crossref] [PubMed]

J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[Crossref] [PubMed]

Larin, K. V.

Lee, J.

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

Lee, M.-H.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Lee, T. M.

Levitz, D.

Li, N.

A. Nel, T. Xia, L. Madler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311, 622–627 (2006).
[Crossref] [PubMed]

Li, X.

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048–3050 (2005).
[Crossref] [PubMed]

Li, X. D.

Li, Z.-Y.

H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048–3050 (2005).
[Crossref] [PubMed]

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

Liao, H.

H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17, 4636–4641 (2005).
[Crossref]

Lin, A.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Lin, M.

Y. Zhao, B. Sadtler, M. Lin, G. H. Hockerman, and A. Wei, “Nanoprobe implantation into mammalian cells by cationic transfection,” Chem. Commun. pp. 784-785 (2004).

Link, S.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a unction of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Liu, M.

M. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
[Crossref]

Liu, Y.

K. Chen, Y. Liu, G. Ameer, and V. Backman, “Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels,” J. Biomed. Opt. 10, 024005-1-6 (2005).
[Crossref] [PubMed]

Liz-Marzan, L. M.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applicatons,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Loo, C.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
[Crossref] [PubMed]

Luo, W.

Madler, L.

A. Nel, T. Xia, L. Madler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311, 622–627 (2006).
[Crossref] [PubMed]

Marelli, F.

Marks, D. L.

McGuckin, L. E. L.

Milner, T. E.

Mohamed, M. B.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a unction of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

Morgner, U.

Motamedi, M.

Mulvaney, P.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applicatons,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
[Crossref] [PubMed]

Murphy, C. J.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1, 325–327 (2005).
[Crossref]

Mwamuka, J.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1, 325–327 (2005).
[Crossref]

Narayanan, R.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[Crossref] [PubMed]

Nel, A.

A. Nel, T. Xia, L. Madler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311, 622–627 (2006).
[Crossref] [PubMed]

Nelson, J. S.

Niidome, T.

H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods sing phosphatidylcholine to reduce cytotoxicity,” Langmuir 22, 2–5 (2006).
[Crossref]

Niidome, Y.

H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods sing phosphatidylcholine to reduce cytotoxicity,” Langmuir 22, 2–5 (2006).
[Crossref]

Oldenburg, A. L.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208-1-14 (2005).
[Crossref]

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005). http://www.opticsexpress.org/abstract.cfm?id=85327.
[Crossref] [PubMed]

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546–1548 (2003).
[Crossref] [PubMed]

A. L. Oldenburg, D. A. Zweifel, C. Xu, A. Wei, and S. A. Boppart, “Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system,” in Proceedings of SPIE: Plasmonics in biology and medicine II, vol. 5703, pp. 50–60 (2005).

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

Pastoriza-Santos, I.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applicatons,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Perez-Juste, J.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applicatons,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

Perez-Segarra, W.

Y. Zhao, W. Perez-Segarra, Q. Shi, and A. Wei, “Dithiocarbamate assembly on gold,” J. Am. Chem. Soc. 127, 7328–7329 (2005).
[Crossref] [PubMed]

Petrova, I. Y.

Pickering, J. W.

Pitris, C.

Povazay, B.

Prahl, S. A.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal, pp. 572-574 (Cambridge University Press, 1989).

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

Rao, K. D.

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Rollins, A. M.

Sadtler, B.

Y. Zhao, B. Sadtler, M. Lin, G. H. Hockerman, and A. Wei, “Nanoprobe implantation into mammalian cells by cationic transfection,” Chem. Commun. pp. 784-785 (2004).

Saeki, F.

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

Sattmann, H.

Schmetterer, L.

Schmitt, J. M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[Crossref] [PubMed]

J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032–6042 (1993).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Shi, Q.

Y. Zhao, W. Perez-Segarra, Q. Shi, and A. Wei, “Dithiocarbamate assembly on gold,” J. Am. Chem. Soc. 127, 7328–7329 (2005).
[Crossref] [PubMed]

Simon, J. D.

Sitafalwalla, S.

Sonnichsen, C.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
[Crossref] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Sterenborg, H. J. C. M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Sullivan, C. J.

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52–S55 (2002).
[Crossref] [PubMed]

Sun, T.

Suslick, K. S.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

Swartling, J.

Takahashi, H.

H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods sing phosphatidylcholine to reduce cytotoxicity,” Langmuir 22, 2–5 (2006).
[Crossref]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal, pp. 572-574 (Cambridge University Press, 1989).

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[Crossref] [PubMed]

Thrane, L.

Toublan, F. J.-J.

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[Crossref] [PubMed]

Tycho, A.

Unterhuber, A.

Valanciunaite, J.

van der Meer, F. J.

van Gemert, M. J. C.

van Leeuwen, T. G.

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
[Crossref]

van Wieringer, N.

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal, pp. 572-574 (Cambridge University Press, 1989).

von Plessen, G.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
[Crossref] [PubMed]

Wang, C. R. C.

C.-H. Chou, C.-D. Chen, and C. R. C. Wang, “Highly efficient, wavelength-tunable, gold nanoparitcle based optothermal nanoconvertors,” J. Phys. Chem. B 109, 11135–11138 (2005).
[Crossref]

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
[Crossref] [PubMed]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
[Crossref] [PubMed]

D. A. Zweifel and A. Wei, “Sulfide-arrested growth of gold nanorods,” Chem. Mater. 17, 4256–4261 (2005).
[Crossref]

Y. Zhao, W. Perez-Segarra, Q. Shi, and A. Wei, “Dithiocarbamate assembly on gold,” J. Am. Chem. Soc. 127, 7328–7329 (2005).
[Crossref] [PubMed]

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005). http://www.opticsexpress.org/abstract.cfm?id=85327.
[Crossref] [PubMed]

Y. Zhao, B. Sadtler, M. Lin, G. H. Hockerman, and A. Wei, “Nanoprobe implantation into mammalian cells by cationic transfection,” Chem. Commun. pp. 784-785 (2004).

A. L. Oldenburg, D. A. Zweifel, C. Xu, A. Wei, and S. A. Boppart, “Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system,” in Proceedings of SPIE: Plasmonics in biology and medicine II, vol. 5703, pp. 50–60 (2005).

T. B. Huff, M. H. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei, “CTAB-mediated cell uptake of gold nanorods,” Manuscript submitted (2006).

Welch, A. J.

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

West, J.

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

Wiley, B.

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

Wiley, B. J.

Wilk, T.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
[Crossref] [PubMed]

Wilson, O.

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
[Crossref] [PubMed]

Wyatt, M. D.

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1, 325–327 (2005).
[Crossref]

Xia, T.

A. Nel, T. Xia, L. Madler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311, 622–627 (2006).
[Crossref] [PubMed]

Xia, Y.

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048–3050 (2005).
[Crossref] [PubMed]

Xu, C.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208-1-14 (2005).
[Crossref]

C. Xu, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett. 29, 1647–1649 (2004).
[Crossref] [PubMed]

A. L. Oldenburg, D. A. Zweifel, C. Xu, A. Wei, and S. A. Boppart, “Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system,” in Proceedings of SPIE: Plasmonics in biology and medicine II, vol. 5703, pp. 50–60 (2005).

Yadlowsky, M.

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[Crossref] [PubMed]

Yamada, S.

H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods sing phosphatidylcholine to reduce cytotoxicity,” Langmuir 22, 2–5 (2006).
[Crossref]

Yang, C.

Yazdanfar, S.

Yguerabide, E. E.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262, 137–156 (1998).
[Crossref] [PubMed]

Yguerabide, J.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262, 137–156 (1998).
[Crossref] [PubMed]

Yura, H. T.

Zaccanti, G.

Zhao, Y.

Y. Zhao, W. Perez-Segarra, Q. Shi, and A. Wei, “Dithiocarbamate assembly on gold,” J. Am. Chem. Soc. 127, 7328–7329 (2005).
[Crossref] [PubMed]

Y. Zhao, B. Sadtler, M. Lin, G. H. Hockerman, and A. Wei, “Nanoprobe implantation into mammalian cells by cationic transfection,” Chem. Commun. pp. 784-785 (2004).

T. B. Huff, M. H. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei, “CTAB-mediated cell uptake of gold nanorods,” Manuscript submitted (2006).

Zweifel, D. A.

D. A. Zweifel and A. Wei, “Sulfide-arrested growth of gold nanorods,” Chem. Mater. 17, 4256–4261 (2005).
[Crossref]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
[Crossref] [PubMed]

A. L. Oldenburg, D. A. Zweifel, C. Xu, A. Wei, and S. A. Boppart, “Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system,” in Proceedings of SPIE: Plasmonics in biology and medicine II, vol. 5703, pp. 50–60 (2005).

Acad. Radiol. (1)

J. K. Barton, J. B. Hoying, and C. J. Sullivan, “Use of microbubbles as an optical coherence tomography contrast agent,” Acad. Radiol. 9, S52–S55 (2002).
[Crossref] [PubMed]

Adv. Mater. (1)

J. Chen, B. Wiley, Z.-Y. Li, D. Campbell, F. Saeki, H. Cang, L. Au, J. Lee, X. Li, and Y. Xia, “Gold nanocages: engineering their structure for biomedical applications,” Adv. Mater. 17, 2255–2261 (2005).
[Crossref]

Anal. Biochem. (1)

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem. 262, 137–156 (1998).
[Crossref] [PubMed]

Appl. Opt. (4)

Chem. Commun. pp. (1)

Y. Zhao, B. Sadtler, M. Lin, G. H. Hockerman, and A. Wei, “Nanoprobe implantation into mammalian cells by cationic transfection,” Chem. Commun. pp. 784-785 (2004).

Chem. Mater. (2)

D. A. Zweifel and A. Wei, “Sulfide-arrested growth of gold nanorods,” Chem. Mater. 17, 4256–4261 (2005).
[Crossref]

H. Liao and J. H. Hafner, “Gold nanorod bioconjugates,” Chem. Mater. 17, 4636–4641 (2005).
[Crossref]

Chem. Phys. Lett. (1)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

Chem. Rev. (1)

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: Synthesis, characterization and applicatons,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9, 227–233 (2003).
[Crossref]

J. Am. Chem. Soc. (2)

Y. Zhao, W. Perez-Segarra, Q. Shi, and A. Wei, “Dithiocarbamate assembly on gold,” J. Am. Chem. Soc. 127, 7328–7329 (2005).
[Crossref] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128, 2115–2120 (2006).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167–176 (2001).
[Crossref] [PubMed]

K. Chen, Y. Liu, G. Ameer, and V. Backman, “Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels,” J. Biomed. Opt. 10, 024005-1-6 (2005).
[Crossref] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10, 041208-1-14 (2005).
[Crossref]

J. Phys. Chem. B (3)

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a unction of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999).
[Crossref]

C.-H. Chou, C.-D. Chen, and C. R. C. Wang, “Highly efficient, wavelength-tunable, gold nanoparitcle based optothermal nanoconvertors,” J. Phys. Chem. B 109, 11135–11138 (2005).
[Crossref]

M. Liu and P. Guyot-Sionnest, “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids,” J. Phys. Chem. B 109, 22192–22200 (2005).
[Crossref]

Langmuir (1)

H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, and S. Yamada, “Modification of gold nanorods sing phosphatidylcholine to reduce cytotoxicity,” Langmuir 22, 2–5 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, “Gold nanocages as contrast agents for spectroscopic optical coherence tomography,” Opt. Lett. 30, 3048–3050 (2005).
[Crossref] [PubMed]

U. Morgner, W. Drexler, F. X. Kartner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[Crossref]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[Crossref] [PubMed]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Molecular contrast in optical coherence tomography by use of a pump-probe technique,” Opt. Lett. 28, 340–341 (2003).
[Crossref] [PubMed]

T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, and S. A. Boppart, “Engineered microsphere contrast agents for optical coherence tomography,” Opt. Lett. 28, 1546–1548 (2003).
[Crossref] [PubMed]

C. Xu, D. L. Marks, and S. A. Boppart, “Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography,” Opt. Lett. 29, 1647–1649 (2004).
[Crossref] [PubMed]

C. Yang, L. E. L. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt, “Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent,” Opt. Lett. 29, 2016–2018 (2004).
[Crossref] [PubMed]

L. Thrane, M. H. Frosz, T. M. Jorgensen, A. Tycho, H. T. Yura, and P. E. Andersen, “Extraction of optical scattering parameters and attenuation compensation in optical coherence tomography images of multilayered tissue structures,” Opt. Lett. 29, 1641–1643 (2004).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

J. M. Schmitt, A. Knuttel, M. Yadlowsky, and M. A. Eckhaus, “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39, 1705–1720 (1994).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402-1-4 (2002).
[Crossref] [PubMed]

D. L. Marks and S. A. Boppart, “Nonlinear interferometric vibrational imaging,” Phys. Rev. Lett. 92, 123905- 1-4 (2004).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. USA 100, 13549–13554 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci.USA (1)

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci.USA 102, 15752–15756 (2005).
[Crossref] [PubMed]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref] [PubMed]

A. Nel, T. Xia, L. Madler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311, 622–627 (2006).
[Crossref] [PubMed]

Small (1)

E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy, and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1, 325–327 (2005).
[Crossref]

Technol. Cancer Res. Treat. (1)

C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3, 33–40 (2004).
[PubMed]

Other (4)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, pp. 141–154 (John Wiley and Sons, 1983).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal, pp. 572-574 (Cambridge University Press, 1989).

A. L. Oldenburg, D. A. Zweifel, C. Xu, A. Wei, and S. A. Boppart, “Characterization of plasmon-resonant gold nanorods as near-infrared optical contrast agents investigated using a double-integrating sphere system,” in Proceedings of SPIE: Plasmonics in biology and medicine II, vol. 5703, pp. 50–60 (2005).

T. B. Huff, M. H. Hansen, Y. Zhao, J.-X. Cheng, and A. Wei, “CTAB-mediated cell uptake of gold nanorods,” Manuscript submitted (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Monte Carlo simulations of contrast agent detection with OCT. (a) Example depth-dependent OCT data with added shot noise (black) and corresponding least-squares line (red) fit to Eq.(6). (b) Scatter plot of the best fit values of ρ̃tiss and ρca for 1000 independent experiments. The value of σρca is taken to be half the 68% confidence interval.

Fig. 2.
Fig. 2.

Plots of uncertainty in measurement of contrast agent concentration σρca versus backscattering albedo a′ca . Results of Monte Carlo simulations (points) are plotted with their best-fit line according to Eq.(8) with fit parameters σ0 and ∆a′. The left plot shows results obtained while varying the degree of tissue fluctuations, and the right plot illustrates varying levels of OCT shot noise. All other parameters are specified in the text.

Fig. 3.
Fig. 3.

Left: TEM image of SPR nanorods. Right: Extinction spectra of nanorods in water at 136 ppm. TR, transverse resonance; LR, longitudinal resonance. An intermediate peak is produced by a small percentage of non-rodlike nanoparticles.

Fig. 4.
Fig. 4.

OCT imaging while varying the concentration of the tissue phantom. Left: Example M-mode OCT image. Middle: Depth-dependent OCT data are plotted with their best-fit lines according to Eq.(6). Right: The extracted extinction coefficient μt and backscattering albedo a′ are plotted versus the tissue phantom concentration.

Fig. 5.
Fig. 5.

Dose-dependent changes in μt (top row) and a′ (bottom row) while mixing gold nanorods (left column) and silica spheres (right column) with 2% intralipid, as measured from OCT images. Best-fit lines according to Eq.(1) are plotted. Scales are uniform along rows and columns to aid in comparison.

Fig. 6.
Fig. 6.

Discrimination of nanorods within tissue phantoms of randomly chosen concentration, using backscattering albedo-based OCT contrast. Intralipid samples (2 ± 0.4%) without nanorods (open circles) are distinguished from those containing nanorods (82 ppm, filled squares) by the parameter a′.

Tables (1)

Tables Icon

Table 1. Summary of measured optical properties of aqueous suspensions of gold nanorods (136 ppm ≈ 0.0007% v/v), silica spheres (~1% v/v), and intralipid (2% v/v). Values reported as mean ± standard deviation of sampled data.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

μ b = ε b , tiss ρ ˜ tiss + ε b , ca ρ ca
μ t = ε t , tiss ρ ˜ tiss + ε t , ca ρ ca
ρ ca = μ b ε t , tiss , μ t ε b , tiss ε b , ca ε t , tiss ε t , ca ε b , tiss = μ t ( a med ' a ' tiss ) ε t , ca ( a ' ca a ' tiss )
ρ ca = μ t ε t , tiss < ρ ˜ tiss > ε t , ca for a ' ca = a ' tiss
σ ρ ca σ OCT a ca a tiss for a ca a tiss
σ ρ ca ε t , tiss ε t , ca σ ρ ˜ tiss for a ca = a tiss
S OCT ( z ) = S 0 μ b ρ ˜ tiss ρ ca exp ( μ t ρ ˜ tiss ρ ca z ) f ( z z f , z R )
χ 2 = i = 1 N ( S i S OCT ρ ˜ tiss ρ ca σ OCT ) 2 + ( ρ ˜ tiss < ρ ˜ tiss > σ ρ ˜ tiss ) 2
σ ρ ca ( a ca ) = σ 0 ( ( a ca a tiss Δ a ' ) 2 + 1 ) 1 2
σ 0 Δ a ' a ca a tiss for a ca a tiss Δ a '

Metrics