Abstract

We investigate in vivo detection of mammary tumors in a rat model using autofluorescence imaging in the red and far-red spectral regions. The objective was to explore this method for non-invasive detection of malignant tumors and correlation between autofluorescence properties of tumors and their pathologic status. Eighteen tumor-bearing rats, bearing eight benign and seventeen malignant tumors were imaged. Autofluorescence images were acquired using spectral windows centered at 700-nm, 750-nm and 800-nm under laser excitation at 632.8-nm and 670-nm. Intensity in the autofluorescence images of malignant tumors under 670-nm excitation was higher than that of the adjacent normal tissue. whereas intensity of benign tumors was lower compared to normal tissue.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. National Cancer Institute, “Cancernet resource” (National Cancer Institute, 2003), http://cis.nci.nih.gov/fact/5_6.htm.
  2. National Cancer Institute, “Surveillance, Epidemiology, and End Results: Estimated new cancer cases and deaths for 2004” (National Cancer Institute, 2004), http://seer.cancer.gov/cgi-bin/csr/1975_2001/search.pl#results.
  3. T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225, 165–75 (2002).
    [CrossRef] [PubMed]
  4. M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions.,” Surg. Gynecol. Obstet. 48, 721–729 (1929).
  5. X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004).
    [CrossRef] [PubMed]
  6. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
    [CrossRef] [PubMed]
  7. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97, 2767–72. (2000).
    [CrossRef] [PubMed]
  8. G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32. (1998).
    [PubMed]
  9. C. J. Frank, D. C. Redd, T. S. Gansler, and R. L. McCreery, “Characterization of human breast biopsy specimens with near-IR Raman spectroscopy,” Anal. Chem. 66, 319–26 (1994).
    [CrossRef] [PubMed]
  10. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–80 (2002).
    [PubMed]
  11. R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
    [CrossRef] [PubMed]
  12. S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Time Resolved Degree of Polarization for Human Breast Tissue,” Optics Commun. 124, 439 (1996).
    [CrossRef]
  13. D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).
  14. S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. DeVere White, “Spectroscopic detection of bladder cancer using near-infrared imaging techniques,” J. Biomed. Opt. 9, 767–71 (2004).
    [CrossRef] [PubMed]
  15. S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. White, “Near-infrared autofluorescence imaging for detection of cancer,” J. Biomed. Opt. 9, 587–92 (2004).
    [CrossRef] [PubMed]
  16. G. Zhang, S. G. Demos, and R. R. Alfano, “Far-red and NIR spectral wing emission from tissues under 532-nm and 632-nm photo-excitation,” Lasers Life Sci. 9, 1–16 (1999).
  17. M. Inaguma and K. Hashimoto, “Porphyrin-like fluorescence in oral cancer: In vivo fluorescence spectral characterization of lesions by use of a near-ultraviolet excited autofluorescence diagnosis system and separation of fluorescent extracts by capillary electrophoresis,” Cancer 86, 2201–11. (1999).
    [CrossRef] [PubMed]
  18. G. Stoica and A. Koestner, “Diverse spectrum of tumors in male Sprague-Dawley rats following single high doses of N-ethyl-N-nitrosourea (ENU),” Am. J. Pathol. 116, 319–26 (1984).
    [PubMed]
  19. R. Scarff and H. Torloni, “Histological typing of breast tumors,” in World Health Organization, (Geneva, 1968), pp. 13–20.
  20. M. M. el-Sharabasy, A. M. el-Waseef, M. M. Hafez, and S. A. Salim, “Porphyrin metabolism in some malignant diseases,” Br. J. Cancer 65, 409–12. (1992).
    [CrossRef] [PubMed]
  21. L. Rasetti, G. F. Rubino, L. Tettinatti, and G. W. Drago, “Porphyrin porphobilinogen and amino ketone levels in tumor tissue,” Panminerva Med. 7, 105–110 (1965).
  22. B. Zawirska, “Comparative porphyrin content in tumors with contiguous non-neoplastic tissues,” Neoplasma 26, 223–9. (1979).
    [PubMed]
  23. T. Theodossiou and A. J. MacRobert, “Comparison of the photodynamic effect of exogenous photoprotoporphyrin and protoporphyrin IX on PAM 212 murine keratocytes.,” Photochem. Photobiol. 76, 530–537 (2002).
    [CrossRef] [PubMed]
  24. D. M. Harris and J. Werkhaven, “Endogenous porphyrin fluorescence in tumors,” Lasers Surg. Med. 7, 467–72. (1987).
    [CrossRef] [PubMed]
  25. H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
    [PubMed]
  26. M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. 9, 177–86 (1999).
    [CrossRef]

2004 (4)

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
[CrossRef] [PubMed]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. DeVere White, “Spectroscopic detection of bladder cancer using near-infrared imaging techniques,” J. Biomed. Opt. 9, 767–71 (2004).
[CrossRef] [PubMed]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. White, “Near-infrared autofluorescence imaging for detection of cancer,” J. Biomed. Opt. 9, 587–92 (2004).
[CrossRef] [PubMed]

2003 (1)

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

2002 (3)

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225, 165–75 (2002).
[CrossRef] [PubMed]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–80 (2002).
[PubMed]

T. Theodossiou and A. J. MacRobert, “Comparison of the photodynamic effect of exogenous photoprotoporphyrin and protoporphyrin IX on PAM 212 murine keratocytes.,” Photochem. Photobiol. 76, 530–537 (2002).
[CrossRef] [PubMed]

2000 (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97, 2767–72. (2000).
[CrossRef] [PubMed]

1999 (3)

G. Zhang, S. G. Demos, and R. R. Alfano, “Far-red and NIR spectral wing emission from tissues under 532-nm and 632-nm photo-excitation,” Lasers Life Sci. 9, 1–16 (1999).

M. Inaguma and K. Hashimoto, “Porphyrin-like fluorescence in oral cancer: In vivo fluorescence spectral characterization of lesions by use of a near-ultraviolet excited autofluorescence diagnosis system and separation of fluorescent extracts by capillary electrophoresis,” Cancer 86, 2201–11. (1999).
[CrossRef] [PubMed]

M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. 9, 177–86 (1999).
[CrossRef]

1998 (3)

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32. (1998).
[PubMed]

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

1996 (1)

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Time Resolved Degree of Polarization for Human Breast Tissue,” Optics Commun. 124, 439 (1996).
[CrossRef]

1994 (1)

C. J. Frank, D. C. Redd, T. S. Gansler, and R. L. McCreery, “Characterization of human breast biopsy specimens with near-IR Raman spectroscopy,” Anal. Chem. 66, 319–26 (1994).
[CrossRef] [PubMed]

1992 (1)

M. M. el-Sharabasy, A. M. el-Waseef, M. M. Hafez, and S. A. Salim, “Porphyrin metabolism in some malignant diseases,” Br. J. Cancer 65, 409–12. (1992).
[CrossRef] [PubMed]

1987 (1)

D. M. Harris and J. Werkhaven, “Endogenous porphyrin fluorescence in tumors,” Lasers Surg. Med. 7, 467–72. (1987).
[CrossRef] [PubMed]

1984 (1)

G. Stoica and A. Koestner, “Diverse spectrum of tumors in male Sprague-Dawley rats following single high doses of N-ethyl-N-nitrosourea (ENU),” Am. J. Pathol. 116, 319–26 (1984).
[PubMed]

1979 (1)

B. Zawirska, “Comparative porphyrin content in tumors with contiguous non-neoplastic tissues,” Neoplasma 26, 223–9. (1979).
[PubMed]

1965 (1)

L. Rasetti, G. F. Rubino, L. Tettinatti, and G. W. Drago, “Porphyrin porphobilinogen and amino ketone levels in tumor tissue,” Panminerva Med. 7, 105–110 (1965).

1929 (1)

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions.,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Alfano, R. R.

G. Zhang, S. G. Demos, and R. R. Alfano, “Far-red and NIR spectral wing emission from tissues under 532-nm and 632-nm photo-excitation,” Lasers Life Sci. 9, 1–16 (1999).

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Time Resolved Degree of Polarization for Human Breast Tissue,” Optics Commun. 124, 439 (1996).
[CrossRef]

Bartlett, M.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004).
[CrossRef] [PubMed]

Bevilacqua, F.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
[CrossRef] [PubMed]

Bigio, I. J.

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

Bown, S. G.

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

Brasch, R. C.

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

Briggs, G. M.

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

Butler, J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
[CrossRef] [PubMed]

Carpenter, P. M.

M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. 9, 177–86 (1999).
[CrossRef]

Cerussi, A. E.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
[CrossRef] [PubMed]

Chance, B.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97, 2767–72. (2000).
[CrossRef] [PubMed]

Chen, K.

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Chicken, D. W.

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–80 (2002).
[PubMed]

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Cutler, M.

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions.,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Daldrup, H.

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

Dasari, R. R.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–80 (2002).
[PubMed]

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Deinum, G.

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Demos, S. G.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. DeVere White, “Spectroscopic detection of bladder cancer using near-infrared imaging techniques,” J. Biomed. Opt. 9, 767–71 (2004).
[CrossRef] [PubMed]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. White, “Near-infrared autofluorescence imaging for detection of cancer,” J. Biomed. Opt. 9, 587–92 (2004).
[CrossRef] [PubMed]

G. Zhang, S. G. Demos, and R. R. Alfano, “Far-red and NIR spectral wing emission from tissues under 532-nm and 632-nm photo-excitation,” Lasers Life Sci. 9, 1–16 (1999).

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Time Resolved Degree of Polarization for Human Breast Tissue,” Optics Commun. 124, 439 (1996).
[CrossRef]

DeVere White, R.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. DeVere White, “Spectroscopic detection of bladder cancer using near-infrared imaging techniques,” J. Biomed. Opt. 9, 767–71 (2004).
[CrossRef] [PubMed]

Drago, G. W.

L. Rasetti, G. F. Rubino, L. Tettinatti, and G. W. Drago, “Porphyrin porphobilinogen and amino ketone levels in tumor tissue,” Panminerva Med. 7, 105–110 (1965).

el-Sharabasy, M. M.

M. M. el-Sharabasy, A. M. el-Waseef, M. M. Hafez, and S. A. Salim, “Porphyrin metabolism in some malignant diseases,” Br. J. Cancer 65, 409–12. (1992).
[CrossRef] [PubMed]

el-Waseef, A. M.

M. M. el-Sharabasy, A. M. el-Waseef, M. M. Hafez, and S. A. Salim, “Porphyrin metabolism in some malignant diseases,” Br. J. Cancer 65, 409–12. (1992).
[CrossRef] [PubMed]

Fajardo, L. L.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004).
[CrossRef] [PubMed]

Feld, M. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–80 (2002).
[PubMed]

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–80 (2002).
[PubMed]

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Frank, C. J.

C. J. Frank, D. C. Redd, T. S. Gansler, and R. L. McCreery, “Characterization of human breast biopsy specimens with near-IR Raman spectroscopy,” Anal. Chem. 66, 319–26 (1994).
[CrossRef] [PubMed]

Gandour-Edwards, R.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. DeVere White, “Spectroscopic detection of bladder cancer using near-infrared imaging techniques,” J. Biomed. Opt. 9, 767–71 (2004).
[CrossRef] [PubMed]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. White, “Near-infrared autofluorescence imaging for detection of cancer,” J. Biomed. Opt. 9, 587–92 (2004).
[CrossRef] [PubMed]

Gansler, T. S.

C. J. Frank, D. C. Redd, T. S. Gansler, and R. L. McCreery, “Characterization of human breast biopsy specimens with near-IR Raman spectroscopy,” Anal. Chem. 66, 319–26 (1994).
[CrossRef] [PubMed]

Gu, X.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004).
[CrossRef] [PubMed]

Hafez, M. M.

M. M. el-Sharabasy, A. M. el-Waseef, M. M. Hafez, and S. A. Salim, “Porphyrin metabolism in some malignant diseases,” Br. J. Cancer 65, 409–12. (1992).
[CrossRef] [PubMed]

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–80 (2002).
[PubMed]

Harris, D. M.

D. M. Harris and J. Werkhaven, “Endogenous porphyrin fluorescence in tumors,” Lasers Surg. Med. 7, 467–72. (1987).
[CrossRef] [PubMed]

Hashimoto, K.

M. Inaguma and K. Hashimoto, “Porphyrin-like fluorescence in oral cancer: In vivo fluorescence spectral characterization of lesions by use of a near-ultraviolet excited autofluorescence diagnosis system and separation of fluorescent extracts by capillary electrophoresis,” Cancer 86, 2201–11. (1999).
[CrossRef] [PubMed]

Heerdt, A. S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Time Resolved Degree of Polarization for Human Breast Tissue,” Optics Commun. 124, 439 (1996).
[CrossRef]

Hsiang, D.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
[CrossRef] [PubMed]

Inaguma, M.

M. Inaguma and K. Hashimoto, “Porphyrin-like fluorescence in oral cancer: In vivo fluorescence spectral characterization of lesions by use of a near-ultraviolet excited autofluorescence diagnosis system and separation of fluorescent extracts by capillary electrophoresis,” Cancer 86, 2201–11. (1999).
[CrossRef] [PubMed]

Jakubowski, D. B.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
[CrossRef] [PubMed]

Jiang, H.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004).
[CrossRef] [PubMed]

Johnson, K. S.

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

Keshtgar, M. R. S.

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

Koestner, A.

G. Stoica and A. Koestner, “Diverse spectrum of tumors in male Sprague-Dawley rats following single high doses of N-ethyl-N-nitrosourea (ENU),” Am. J. Pathol. 116, 319–26 (1984).
[PubMed]

Kolb, T. M.

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225, 165–75 (2002).
[CrossRef] [PubMed]

Lao, X.

M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. 9, 177–86 (1999).
[CrossRef]

Lee, A. C.

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

Lichy, J.

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225, 165–75 (2002).
[CrossRef] [PubMed]

Link, T. M.

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

Lu, Y.

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

MacRobert, A. J.

T. Theodossiou and A. J. MacRobert, “Comparison of the photodynamic effect of exogenous photoprotoporphyrin and protoporphyrin IX on PAM 212 murine keratocytes.,” Photochem. Photobiol. 76, 530–537 (2002).
[CrossRef] [PubMed]

Manoharan, R.

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

McCreery, R. L.

C. J. Frank, D. C. Redd, T. S. Gansler, and R. L. McCreery, “Characterization of human breast biopsy specimens with near-IR Raman spectroscopy,” Anal. Chem. 66, 319–26 (1994).
[CrossRef] [PubMed]

Muhler, A.

M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. 9, 177–86 (1999).
[CrossRef]

Myles, J.

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Nalcioglu, O.

M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. 9, 177–86 (1999).
[CrossRef]

Newhouse, J. H.

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225, 165–75 (2002).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97, 2767–72. (2000).
[CrossRef] [PubMed]

Okuhata, Y.

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

Perelman, L.

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Pickard, D. D. O.

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

Ramsamooj, R.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. DeVere White, “Spectroscopic detection of bladder cancer using near-infrared imaging techniques,” J. Biomed. Opt. 9, 767–71 (2004).
[CrossRef] [PubMed]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. White, “Near-infrared autofluorescence imaging for detection of cancer,” J. Biomed. Opt. 9, 587–92 (2004).
[CrossRef] [PubMed]

Rasetti, L.

L. Rasetti, G. F. Rubino, L. Tettinatti, and G. W. Drago, “Porphyrin porphobilinogen and amino ketone levels in tumor tissue,” Panminerva Med. 7, 105–110 (1965).

Redd, D. C.

C. J. Frank, D. C. Redd, T. S. Gansler, and R. L. McCreery, “Characterization of human breast biopsy specimens with near-IR Raman spectroscopy,” Anal. Chem. 66, 319–26 (1994).
[CrossRef] [PubMed]

Rosenau, W.

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

Rubino, G. F.

L. Rasetti, G. F. Rubino, L. Tettinatti, and G. W. Drago, “Porphyrin porphobilinogen and amino ketone levels in tumor tissue,” Panminerva Med. 7, 105–110 (1965).

Salim, S. A.

M. M. el-Sharabasy, A. M. el-Waseef, M. M. Hafez, and S. A. Salim, “Porphyrin metabolism in some malignant diseases,” Br. J. Cancer 65, 409–12. (1992).
[CrossRef] [PubMed]

Savage, H.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Time Resolved Degree of Polarization for Human Breast Tissue,” Optics Commun. 124, 439 (1996).
[CrossRef]

Scarff, R.

R. Scarff and H. Torloni, “Histological typing of breast tumors,” in World Health Organization, (Geneva, 1968), pp. 13–20.

Schantz, S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Time Resolved Degree of Polarization for Human Breast Tissue,” Optics Commun. 124, 439 (1996).
[CrossRef]

Schnall, M.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97, 2767–72. (2000).
[CrossRef] [PubMed]

Schutz, L.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004).
[CrossRef] [PubMed]

Shafer, K.

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–80 (2002).
[PubMed]

Shah, N.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
[CrossRef] [PubMed]

Shames, D. M.

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

Star, W. M.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32. (1998).
[PubMed]

Stoica, G.

G. Stoica and A. Koestner, “Diverse spectrum of tumors in male Sprague-Dawley rats following single high doses of N-ethyl-N-nitrosourea (ENU),” Am. J. Pathol. 116, 319–26 (1984).
[PubMed]

Su, M. Y.

M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. 9, 177–86 (1999).
[CrossRef]

Tettinatti, L.

L. Rasetti, G. F. Rubino, L. Tettinatti, and G. W. Drago, “Porphyrin porphobilinogen and amino ketone levels in tumor tissue,” Panminerva Med. 7, 105–110 (1965).

Theodossiou, T.

T. Theodossiou and A. J. MacRobert, “Comparison of the photodynamic effect of exogenous photoprotoporphyrin and protoporphyrin IX on PAM 212 murine keratocytes.,” Photochem. Photobiol. 76, 530–537 (2002).
[CrossRef] [PubMed]

Torloni, H.

R. Scarff and H. Torloni, “Histological typing of breast tumors,” in World Health Organization, (Geneva, 1968), pp. 13–20.

Tromberg, B. J.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
[CrossRef] [PubMed]

Wagnieres, G. A.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32. (1998).
[PubMed]

Wang, Z.

M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. 9, 177–86 (1999).
[CrossRef]

Wendland, M.

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

Werkhaven, J.

D. M. Harris and J. Werkhaven, “Endogenous porphyrin fluorescence in tumors,” Lasers Surg. Med. 7, 467–72. (1987).
[CrossRef] [PubMed]

White, R.

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. White, “Near-infrared autofluorescence imaging for detection of cancer,” J. Biomed. Opt. 9, 587–92 (2004).
[CrossRef] [PubMed]

Wilson, B. C.

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32. (1998).
[PubMed]

Wu, J.

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Yodh, A. G.

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97, 2767–72. (2000).
[CrossRef] [PubMed]

Zawirska, B.

B. Zawirska, “Comparative porphyrin content in tumors with contiguous non-neoplastic tissues,” Neoplasma 26, 223–9. (1979).
[PubMed]

Zhang, G.

G. Zhang, S. G. Demos, and R. R. Alfano, “Far-red and NIR spectral wing emission from tissues under 532-nm and 632-nm photo-excitation,” Lasers Life Sci. 9, 1–16 (1999).

Zhang, Q.

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004).
[CrossRef] [PubMed]

Acad. Radiol. (1)

X. Gu, Q. Zhang, M. Bartlett, L. Schutz, L. L. Fajardo, and H. Jiang, “Differentiation of cysts from solid tumors in the breast with diffuse optical tomography,” Acad. Radiol. 11, 53–60 (2004).
[CrossRef] [PubMed]

AJR Am. J. Roentgenol. (1)

H. Daldrup, D. M. Shames, M. Wendland, Y. Okuhata, T. M. Link, W. Rosenau, Y. Lu, and R. C. Brasch, “Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media,” AJR Am. J. Roentgenol. 171, 941–9. (1998).
[PubMed]

Am. J. Pathol. (1)

G. Stoica and A. Koestner, “Diverse spectrum of tumors in male Sprague-Dawley rats following single high doses of N-ethyl-N-nitrosourea (ENU),” Am. J. Pathol. 116, 319–26 (1984).
[PubMed]

Anal. Chem. (1)

C. J. Frank, D. C. Redd, T. S. Gansler, and R. L. McCreery, “Characterization of human breast biopsy specimens with near-IR Raman spectroscopy,” Anal. Chem. 66, 319–26 (1994).
[CrossRef] [PubMed]

Br. J. Cancer (1)

M. M. el-Sharabasy, A. M. el-Waseef, M. M. Hafez, and S. A. Salim, “Porphyrin metabolism in some malignant diseases,” Br. J. Cancer 65, 409–12. (1992).
[CrossRef] [PubMed]

Breast Cancer Res. Treat. (1)

D. W. Chicken, A. C. Lee, G. M. Briggs, M. R. S. Keshtgar, K. S. Johnson, D. D. O. Pickard, I. J. Bigio, and S. G. Bown, “Optical biopsy: A novel intraoperative diagnostic tool to determine sentinel lymph node status instantly in breast cancer,” Breast Cancer Res. Treat. 82, S172–S174 (2003).

Cancer (1)

M. Inaguma and K. Hashimoto, “Porphyrin-like fluorescence in oral cancer: In vivo fluorescence spectral characterization of lesions by use of a near-ultraviolet excited autofluorescence diagnosis system and separation of fluorescent extracts by capillary electrophoresis,” Cancer 86, 2201–11. (1999).
[CrossRef] [PubMed]

Cancer Res. (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62, 5375–80 (2002).
[PubMed]

J. Biomed. Opt. (3)

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt. 9, 230–8 (2004).
[CrossRef] [PubMed]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. DeVere White, “Spectroscopic detection of bladder cancer using near-infrared imaging techniques,” J. Biomed. Opt. 9, 767–71 (2004).
[CrossRef] [PubMed]

S. G. Demos, R. Gandour-Edwards, R. Ramsamooj, and R. White, “Near-infrared autofluorescence imaging for detection of cancer,” J. Biomed. Opt. 9, 587–92 (2004).
[CrossRef] [PubMed]

J. Magn. Reson. (1)

M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu, “Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents,” J. Magn. Reson. 9, 177–86 (1999).
[CrossRef]

Lasers Life Sci. (1)

G. Zhang, S. G. Demos, and R. R. Alfano, “Far-red and NIR spectral wing emission from tissues under 532-nm and 632-nm photo-excitation,” Lasers Life Sci. 9, 1–16 (1999).

Lasers Surg. Med. (1)

D. M. Harris and J. Werkhaven, “Endogenous porphyrin fluorescence in tumors,” Lasers Surg. Med. 7, 467–72. (1987).
[CrossRef] [PubMed]

Neoplasma (1)

B. Zawirska, “Comparative porphyrin content in tumors with contiguous non-neoplastic tissues,” Neoplasma 26, 223–9. (1979).
[PubMed]

Optics Commun. (1)

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, and R. R. Alfano, “Time Resolved Degree of Polarization for Human Breast Tissue,” Optics Commun. 124, 439 (1996).
[CrossRef]

Panminerva Med. (1)

L. Rasetti, G. F. Rubino, L. Tettinatti, and G. W. Drago, “Porphyrin porphobilinogen and amino ketone levels in tumor tissue,” Panminerva Med. 7, 105–110 (1965).

Photochem. Photobiol. (3)

T. Theodossiou and A. J. MacRobert, “Comparison of the photodynamic effect of exogenous photoprotoporphyrin and protoporphyrin IX on PAM 212 murine keratocytes.,” Photochem. Photobiol. 76, 530–537 (2002).
[CrossRef] [PubMed]

G. A. Wagnieres, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–32. (1998).
[PubMed]

R. Manoharan, K. Shafer, L. Perelman, J. Wu, K. Chen, G. Deinum, M. Fitzmaurice, J. Myles, J. Crowe, R. R. Dasari, and M. S. Feld, “Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging,” Photochem. Photobiol. 67, 15–22 (1998).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. U. S. A. 97, 2767–72. (2000).
[CrossRef] [PubMed]

Radiology (1)

T. M. Kolb, J. Lichy, and J. H. Newhouse, “Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,” Radiology 225, 165–75 (2002).
[CrossRef] [PubMed]

Surg. Gynecol. Obstet. (1)

M. Cutler, “Transillumination as an aid in the diagnosis of breast lesions.,” Surg. Gynecol. Obstet. 48, 721–729 (1929).

Other (3)

National Cancer Institute, “Cancernet resource” (National Cancer Institute, 2003), http://cis.nci.nih.gov/fact/5_6.htm.

National Cancer Institute, “Surveillance, Epidemiology, and End Results: Estimated new cancer cases and deaths for 2004” (National Cancer Institute, 2004), http://seer.cancer.gov/cgi-bin/csr/1975_2001/search.pl#results.

R. Scarff and H. Torloni, “Histological typing of breast tumors,” in World Health Organization, (Geneva, 1968), pp. 13–20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic layout of the key components of the optical imaging system.

Fig. 2.
Fig. 2.

(a) Light scattering image under ambient light and (b) corresponding autofluorescence image under 670-nm excitation showing a rat containing malignant tumors in supine position (tumors #2 and 3). The spectral window for image formation was at 800-nm in both images. The hair represents the very bright regions visible on the fluorescence image outside the area of interest. On the fluorescence image (b), the tumor (indicated by the black arrow), spontaneously emits more fluorescence than adjacent normal mammary tissue (white arrow).

Fig. 3.
Fig. 3.

(a) Light scattering image under ambient light and (b) corresponding autofluorescence image under 670-nm excitation and detection at 800-nm showing a rat containing a benign tumor in supine position (tumor #7). In the fluorescence image (b), the tumor (white arrow) is on the contrary to Fig. 2, much less fluorescent than the adjacent normal mammary tissue (black arrow). This tumor was shown to be a benign fibroadenoma on pathology. The signal intensity ratio T/N was in this case 0.22. Note the visibility of a blood vessel, absorbing light (black arrowheads), outlined by the brighter normal tissue. Small variation in the autofluorescence intensity in the normal tissue area is attributed to the presence of various organs of the animal located below the surface that exhibit different autofluorescence intensities under the deeply propagating excitation light.

Fig. 4.
Fig. 4.

Tumor-to-normal signal intensity ratio plotted according to size for benign (엯) and malignant (Δ) tumors.

Tables (3)

Tables Icon

Table 1. Tumor-to-normal average signal intensity ratios at different laser excitation and detection spectral bands, for benign and malignant tumors.

Tables Icon

Table 2. Tumor-to-normal autofluorescence intensity ratios measured using laser excitation at 670 nm and detection spectral window of 750±20 nm 800±20 nm.

Tables Icon

Table 3. Diagnostic value of NIR autofluorescence imaging under 670-nm excitation and 800-nm detection for the differentiation of benign and malignant breast tumors.

Metrics