Abstract

In side pumped laser head geometries good extraction of energy has to be weighted against diffraction effects of the amplified beam. Beam clipping at the aperture of laser rods can be avoided by using an undoped cladding around the doped core. The wings of e.g. Gaussian beams can be accommodated in the cladding. Phase distortion by the refractive index step of the rod can be compensated by a phase conjugating mirror in double pass configuration. In our proof of principle experiment the brightness of the beam from core doped amplifier rods was shown to be doubled compared to a conventional rod of the same outer diameter.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Design and performance of a multiterawatt, subpicosecond neodymium:glass laser

F. G. Patterson and M. D. Perry
J. Opt. Soc. Am. B 8(11) 2384-2391 (1991)

Design and performance of a multiterawatt Cr:LiSrAlF6 laser system

T. Ditmire, H. Nguyen, and M. D. Perry
J. Opt. Soc. Am. B 11(4) 580-590 (1994)

120-fs terawatt Ti:Al2O3/Cr:LiSrAlF6 laser system

W. E. White, J. R. Hunter, L. Van Woerkom, T. Ditmire, and M. D. Perry
Opt. Lett. 17(15) 1067-1069 (1992)

References

  • View by:
  • |
  • |
  • |

  1. M. Ostermeyer and I. Brandenburg, “Simulation of the extraction of near diffraction limited Gaussian beams from side pumped core doped ceramic Nd:YAG and conventional laser rods,” Opt. Express 13, 10145–10156 (2005)
    [Crossref] [PubMed]
  2. A. Lucianetti, R. Weber, W. Hodel, H. P. Weber, A. Papashvili, V. A. Konyushkin, and T. T. Basiev, “Beam-quality improvement of a passively Q-switched Nd:YAG laser with a core-doped rod,” Appl. Opt. 38, 1777 (1999)
    [Crossref]
  3. L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)
  4. J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)
  5. D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped Ceramic Nd:YAG Laser,” Opt. Express 14, 2590 (2006)
    [Crossref]
  6. T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser,” Opt. Lett. 27, 1792 (2002) 1791
    [Crossref]
  7. Y. Jeong, J.K. Sahu, and D.N. Payne, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 126088–6092 (2004)
    [Crossref] [PubMed]
  8. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 342346–2349 (1963)
    [Crossref]
  9. W. Koechner, Solid-State Laser Engineering, (Springer, 5th Edition) Chapter 4.1
  10. N. Hodgson and H. Weber, Optical Resonators, (Springer, 1997) Chapter 9.3
  11. Baikowski Chimie, BP501, F-74339 La Balme de Sillingy cedex, France
  12. N. Hodgson and H. Weber, Optical Resonators, (Springer, 1997) Chapter 22.1.2
  13. W.A. Clarkson, N.S. Felgate, and D.C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999)
    [Crossref]
  14. A. Heuer and R. Menzel, “Self Pumped Phase Conjugation by Stimulated Brillouin Scattering” in “Phase Conjugate Laser Optics,” edited by A. Brignon and J. P. Huignard, (Wiley-Interscience, New York, 2003)

2006 (1)

D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped Ceramic Nd:YAG Laser,” Opt. Express 14, 2590 (2006)
[Crossref]

2005 (1)

2004 (1)

2002 (1)

T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser,” Opt. Lett. 27, 1792 (2002) 1791
[Crossref]

2001 (1)

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)

2000 (1)

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)

1999 (2)

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 342346–2349 (1963)
[Crossref]

Basiev, T. T.

Brandenburg, I.

Chimie, Baikowski

Baikowski Chimie, BP501, F-74339 La Balme de Sillingy cedex, France

Clarkson, W.A.

Dascalu, T.

T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser,” Opt. Lett. 27, 1792 (2002) 1791
[Crossref]

Fallnich, C.

D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped Ceramic Nd:YAG Laser,” Opt. Express 14, 2590 (2006)
[Crossref]

Felgate, N.S.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 342346–2349 (1963)
[Crossref]

Frede, M.

D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped Ceramic Nd:YAG Laser,” Opt. Express 14, 2590 (2006)
[Crossref]

Freiburg, D.

D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped Ceramic Nd:YAG Laser,” Opt. Express 14, 2590 (2006)
[Crossref]

Hanna, D.C.

Heuer, A.

A. Heuer and R. Menzel, “Self Pumped Phase Conjugation by Stimulated Brillouin Scattering” in “Phase Conjugate Laser Optics,” edited by A. Brignon and J. P. Huignard, (Wiley-Interscience, New York, 2003)

Hodel, W.

Hodgson, N.

N. Hodgson and H. Weber, Optical Resonators, (Springer, 1997) Chapter 22.1.2

N. Hodgson and H. Weber, Optical Resonators, (Springer, 1997) Chapter 9.3

Jeong, Y.

Jianqiu, X.

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)

Jianren, L.

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)

Kaminski, A. A.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)

Koechner, W.

W. Koechner, Solid-State Laser Engineering, (Springer, 5th Edition) Chapter 4.1

Konyushkin, V. A.

Kracht, D.

D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped Ceramic Nd:YAG Laser,” Opt. Express 14, 2590 (2006)
[Crossref]

Kudryashov, A.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)

Lu, J.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)

Lucianetti, A.

Menzel, R.

A. Heuer and R. Menzel, “Self Pumped Phase Conjugation by Stimulated Brillouin Scattering” in “Phase Conjugate Laser Optics,” edited by A. Brignon and J. P. Huignard, (Wiley-Interscience, New York, 2003)

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 342346–2349 (1963)
[Crossref]

Ostermeyer, M.

Papashvili, A.

Pavel, N.

T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser,” Opt. Lett. 27, 1792 (2002) 1791
[Crossref]

Payne, D.N.

Prabhu, M.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)

Sahu, J.K.

Taira, T.

T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser,” Opt. Lett. 27, 1792 (2002) 1791
[Crossref]

Ueda, K.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)

Weber, H.

N. Hodgson and H. Weber, Optical Resonators, (Springer, 1997) Chapter 9.3

N. Hodgson and H. Weber, Optical Resonators, (Springer, 1997) Chapter 22.1.2

Weber, H. P.

Weber, R.

Wilhelm, R.

D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, and C. Fallnich, “Core-doped Ceramic Nd:YAG Laser,” Opt. Express 14, 2590 (2006)
[Crossref]

Yagi, H.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)

Yanagitani, T.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. Jianren, M. Prabhu, X. Jianqiu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminski, “High efficient 2% Nd:yttrium aluminum garnet ceramic laser,” Appl. Phys. Lett. 78, 3707–3709 (2000)

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 342346–2349 (1963)
[Crossref]

Laser Phys. (1)

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, and A. A. Kaminski, “Potential of Ceramic YAG Lasers,” Laser Phys. 78, 1053–1057 (2001)

Opt. Express (3)

Opt. Lett. (2)

W.A. Clarkson, N.S. Felgate, and D.C. Hanna, “Simple method for reducing the depolarization loss resulting from thermally induced birefringence in solid-state lasers,” Opt. Lett. 24, 820–822 (1999)
[Crossref]

T. Dascalu, T. Taira, and N. Pavel, “100-W quasi-continuous-wave diode radially pumped microchip composite Yb:YAG laser,” Opt. Lett. 27, 1792 (2002) 1791
[Crossref]

Other (5)

W. Koechner, Solid-State Laser Engineering, (Springer, 5th Edition) Chapter 4.1

N. Hodgson and H. Weber, Optical Resonators, (Springer, 1997) Chapter 9.3

Baikowski Chimie, BP501, F-74339 La Balme de Sillingy cedex, France

N. Hodgson and H. Weber, Optical Resonators, (Springer, 1997) Chapter 22.1.2

A. Heuer and R. Menzel, “Self Pumped Phase Conjugation by Stimulated Brillouin Scattering” in “Phase Conjugate Laser Optics,” edited by A. Brignon and J. P. Huignard, (Wiley-Interscience, New York, 2003)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Refractive index profile in core doped Nd:YAG ceramic rod with 3mm core diameter.

Fig. 2.
Fig. 2.

(a) Calculated ratio of extracted pulse energies of two Gaussian beams with 2.5 mm and 1.5 mm radius from a 5 mm diameter Nd:YAG rod in double pass configuration as a function of input energy. The output energy is given in addition. The rod is pumped with 2 kW for 200 μs with an excitation efficiency of 70 %.(b) and (c) show the measured far field distributions for a probe beam with 1.5 mm and 2.5 mm radius behind the propagation through a 12 cm long 5 mm diameter laser rod without amplification.

Fig. 3.
Fig. 3.

Oscillator power amplifier (MOPA) arrangement to investigate the potential benefits of the core doped ceramics rods.

Fig. 4.
Fig. 4.

Comparison of extracted pulse energies form conventional and core doped laser rods with conventional HR-mirror in double pass configuration. The full data points show measured pulse energies, the hollow points show calculated pulse energies following a spatially resolved Frantz-Nodvik model.

Fig. 5.
Fig. 5.

Extracted pulse energies with and without phase conjugating SBS-mirror in double pass configuration for the rods with 4 mm doped core (top) and 3 mm doped core(bottom). The single pass extracted energies are given in addition.

Tables (1)

Tables Icon

Table 1. Measured M2-factors for 3 different MOPA-configurations. OD refers to the rod’s outer diameters and ID to the rod’s inner diameter.

Metrics