Abstract

We report on a Nd:YVO4 laser mode-locked with a hybrid active and passive modulator consisting of a single partially poled KTP crystal. The periodically poled part provides negative cascaded Kerr-lensing, which together with intracavity soft and hard apertures gives passive modulation. Active phase modulation comes from the electro-optic effect by applying a voltage over the unpoled part of the crystal. The active modulation provides pulse lengths of about 95 ps, which initiate pulse shortening and self-sustained passive mode-locking by the cascaded Kerr effect. The repetition rate of the laser was 94 MHz and the output power was 350 mW, with a bandwidth of 0.235 nm and pulse lengths down to 6.9 ps.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP

S. J. Holmgren, V. Pasiskevicius, and F. Laurell
Opt. Express 13(14) 5270-5278 (2005)

Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP

Hristo Iliev, Danail Chuchumishev, Ivan Buchvarov, and Valentin Petrov
Opt. Express 18(6) 5754-5762 (2010)

Low-threshold, dual-passive mode locking of a large mode area Nd:GdVO4 laser

S.L. Schieffer, D. Brajkovic, A.I. Cornea, and W. Andreas Schroeder
Opt. Express 14(15) 6694-6704 (2006)

References

  • View by:
  • |
  • |
  • |

  1. L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
    [Crossref]
  2. P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173, 315–321 (2000).
    [Crossref]
  3. A. Agnesi, A. Lucca, G. Reali, and A. Tomaselli, “All-solid-state high-repetition-rate optical source tunable in wavelength and in pulse duration,” J. Opt. Soc. Am. B 18, 286–290 (2001).
    [Crossref]
  4. Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically poled KTP,” Appl. Phys. B 72, 395–397 (2001).
    [Crossref]
  5. K. A. Stankov and J. Jetwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
    [Crossref]
  6. G. McConnell, A. I. Ferguson, and N. Langford, “Additive-pulse mode locking of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 74, 7–9 (2001).
    [Crossref]
  7. V. Couderc, F. Louradour, and A. Barthélémy, “2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching,” Opt. Commun. 166, 103–111 (1999).
    [Crossref]
  8. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, “Self-starting mode-locking of a CW Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–749 (1995).
    [Crossref] [PubMed]
  9. G. Cerullo, V. Magni, and A. Monguzzi, “Group-velocity mismatch compensation in continuous-wave lasers mode locked by second-order nonlinearities,” Opt. Lett. 20, 1785–1787 (1995).
    [Crossref] [PubMed]
  10. G. Toci, M. Vannini, and R. Salimbeni, “Pertubative model for nonstationary second-order cascaded effects,” J. Opt. Soc. Am. B 15, 103–117 (1998).
    [Crossref]
  11. S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8 ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
    [Crossref] [PubMed]
  12. X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
    [Crossref]

2005 (1)

2002 (1)

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

2001 (3)

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically poled KTP,” Appl. Phys. B 72, 395–397 (2001).
[Crossref]

G. McConnell, A. I. Ferguson, and N. Langford, “Additive-pulse mode locking of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 74, 7–9 (2001).
[Crossref]

A. Agnesi, A. Lucca, G. Reali, and A. Tomaselli, “All-solid-state high-repetition-rate optical source tunable in wavelength and in pulse duration,” J. Opt. Soc. Am. B 18, 286–290 (2001).
[Crossref]

2000 (1)

P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173, 315–321 (2000).
[Crossref]

1999 (2)

V. Couderc, F. Louradour, and A. Barthélémy, “2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching,” Opt. Commun. 166, 103–111 (1999).
[Crossref]

X. Liu, L. Qian, and F. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascade χ(2):χ(2) nonlinearity,” Opt. Lett. 24, 1777–1779 (1999).
[Crossref]

1998 (1)

1995 (2)

1988 (1)

K. A. Stankov and J. Jetwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[Crossref]

Agnesi, A.

Barthélémy, A.

V. Couderc, F. Louradour, and A. Barthélémy, “2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching,” Opt. Commun. 166, 103–111 (1999).
[Crossref]

Cerullo, G.

Chen, Y. F.

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically poled KTP,” Appl. Phys. B 72, 395–397 (2001).
[Crossref]

Couderc, V.

V. Couderc, F. Louradour, and A. Barthélémy, “2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching,” Opt. Commun. 166, 103–111 (1999).
[Crossref]

Ferguson, A. I.

G. McConnell, A. I. Ferguson, and N. Langford, “Additive-pulse mode locking of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 74, 7–9 (2001).
[Crossref]

Holmgren, S. J.

Huang, J. Y.

P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173, 315–321 (2000).
[Crossref]

Jetwa, J.

K. A. Stankov and J. Jetwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[Crossref]

Keller, U.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

Krainer, L.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

Langford, N.

G. McConnell, A. I. Ferguson, and N. Langford, “Additive-pulse mode locking of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 74, 7–9 (2001).
[Crossref]

Laurell, F.

Lecomte, S.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

Liu, X.

Louradour, F.

V. Couderc, F. Louradour, and A. Barthélémy, “2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching,” Opt. Commun. 166, 103–111 (1999).
[Crossref]

Lucca, A.

Magni, V.

McConnell, G.

G. McConnell, A. I. Ferguson, and N. Langford, “Additive-pulse mode locking of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 74, 7–9 (2001).
[Crossref]

Monguzzi, A.

Moser, M.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

Paschotta, R.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

Pasiskevicius, V.

Qian, L.

Reali, G.

Salimbeni, R.

Segala, D.

Silvestri, S. De

Stankov, K. A.

K. A. Stankov and J. Jetwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[Crossref]

Toci, G.

Tomaselli, A.

Tsai, S. W.

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically poled KTP,” Appl. Phys. B 72, 395–397 (2001).
[Crossref]

Vannini, M.

Wang, S. C.

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically poled KTP,” Appl. Phys. B 72, 395–397 (2001).
[Crossref]

Weingarten, K. J.

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

Wise, F.

Yang, P. K.

P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173, 315–321 (2000).
[Crossref]

Appl. Phys. B (2)

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periodically poled KTP,” Appl. Phys. B 72, 395–397 (2001).
[Crossref]

G. McConnell, A. I. Ferguson, and N. Langford, “Additive-pulse mode locking of a diode-pumped Nd:YVO4 laser,” Appl. Phys. B 74, 7–9 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Krainer, R. Paschotta, S. Lecomte, M. Moser, K. J. Weingarten, and U. Keller, “Compact Nd:YVO4 lasers with pulse repetition rates up to 160 GHz,” IEEE J. Quantum Electron. 38, 1331–1338 (2002).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

P. K. Yang and J. Y. Huang, “An inexpensive diode-pumped mode-locked Nd:YVO4 laser for nonlinear optical microscopy,” Opt. Commun. 173, 315–321 (2000).
[Crossref]

K. A. Stankov and J. Jetwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[Crossref]

V. Couderc, F. Louradour, and A. Barthélémy, “2.8 ps pulses from a mode-locked diode pumped Nd:YVO4 laser using quadratic polarization switching,” Opt. Commun. 166, 103–111 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. The cavity design. The abbreviations in the figure are explained in the text.
Fig. 2.
Fig. 2. Electro-optic modulation (above) and mode-locked signal (below). At the times 2 s and 8 s the beam was momentarily blocked inside the cavity and mode-locking is lost. When the electro-optic modulation is turned on again the mode-locking restarts.
Fig. 3.
Fig. 3. Power spectral density of the optical signal, centered at the cavity repetition frequency of 94 MHz. The centre frequencies differs slightly for increased clarity.
Fig. 4.
Fig. 4. Intensity auto-correlation traces. The left-hand trace was recorded with electro-optic modulation present and the right-hand trace is from cascaded Kerr lensing only.
Fig. 5.
Fig. 5. Intensity auto-correlation traces. The black trace was recorded with electro-optic modulation only and smaller blue one is from the hybrid scheme.

Metrics