Abstract

Two examples are presented to illustrate the advantages of polarization coded apertures, in which the incoming light will rotate its polarization at a portion of an aperture. In the first example the depth of field of a diffraction limited lens is increased without sacrificing the light throughput; in the second example the axial focal intensity of a pixelated Fresnel zone plate is increased by 100%. Both examples work for linearly polarized or unpolarized illumination.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ghosh, K. Murata and A. K. Chakraborty, "Frequency-response characteristics of a perfect lens masked by polarizing devices," J. Opt. Soc. Am. A 5,277-284 (1988).
    [CrossRef]
  2. D. R. Chowdhury, K. Bhattacharya, S. Sanyal and A. K. Chakraborty, "Performance of a polarization-masked lens aperture in the presence of spherical aberration," J. Opt. A: Pure and Applied Optics,  4,98-104 (2002).
    [CrossRef]
  3. A. Zlotnik, Z. Zalevsky and E. Marom, "Superresolution with nonorthogonal polarization coding," Appl. Opt. 44,3705-3715 (2005).
    [CrossRef] [PubMed]
  4. E. H. Linfoot and E. Wolf, "Diffraction images in systems with an annular aperture," Proc. Phys. Soc. B 66,145-149 (1953).
    [CrossRef]
  5. T-C Poon and M. Motamedi, "Optical digital incoherent image-processing for extended depth of field," Appl. Opt. 26,4612-4615 (1987).
    [CrossRef] [PubMed]
  6. J. Ojeda-Castaneda and L. R. Berriel Valdos, "Abitrarily high focal depth with finite aperture," Opt. Lett. 13,183-185 (1988).
    [CrossRef] [PubMed]
  7. E. R. Dowski, Jr. and W. T. Cathey, "Extended depth of field through wave-front coding," Appl. Opt. 34,1859- 1866 (1995).
    [CrossRef] [PubMed]
  8. W. Chi and N. George, "Computational imaging with the logarithmic asphere: theory," J. Opt. Soc. Am. A 20,2260-2273 (2003).
    [CrossRef]
  9. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, (John Wiley & Sons, Inc., New York, 1999). Chapter 9 and references therein.
  10. T. D. Beynon, I. Kirk and T. R. Mathews, "Gabor zone plate with binary transmittance values," Opt. Lett. 17,544-546 (1992).
    [CrossRef] [PubMed]
  11. P.W. McOwan, M. S. Gordon andW. J. Hossack, "A switchable liquid crystal binary Gabor lens," Opt. Commun. 103,189-193 (1993).
    [CrossRef]
  12. R. E. English, Jr. and N. George, "Diffraction from a circular aperture: on axis field strength," Appl. Opt. 26,2360-2363 (1987).
    [CrossRef] [PubMed]

2005

2003

2002

D. R. Chowdhury, K. Bhattacharya, S. Sanyal and A. K. Chakraborty, "Performance of a polarization-masked lens aperture in the presence of spherical aberration," J. Opt. A: Pure and Applied Optics,  4,98-104 (2002).
[CrossRef]

1995

1993

P.W. McOwan, M. S. Gordon andW. J. Hossack, "A switchable liquid crystal binary Gabor lens," Opt. Commun. 103,189-193 (1993).
[CrossRef]

1992

1988

1987

1953

E. H. Linfoot and E. Wolf, "Diffraction images in systems with an annular aperture," Proc. Phys. Soc. B 66,145-149 (1953).
[CrossRef]

Berriel Valdos, L. R.

Beynon, T. D.

Bhattacharya, K.

D. R. Chowdhury, K. Bhattacharya, S. Sanyal and A. K. Chakraborty, "Performance of a polarization-masked lens aperture in the presence of spherical aberration," J. Opt. A: Pure and Applied Optics,  4,98-104 (2002).
[CrossRef]

Cathey, W. T.

Chakraborty, A. K.

D. R. Chowdhury, K. Bhattacharya, S. Sanyal and A. K. Chakraborty, "Performance of a polarization-masked lens aperture in the presence of spherical aberration," J. Opt. A: Pure and Applied Optics,  4,98-104 (2002).
[CrossRef]

A. Ghosh, K. Murata and A. K. Chakraborty, "Frequency-response characteristics of a perfect lens masked by polarizing devices," J. Opt. Soc. Am. A 5,277-284 (1988).
[CrossRef]

Chi, W.

Chowdhury, D. R.

D. R. Chowdhury, K. Bhattacharya, S. Sanyal and A. K. Chakraborty, "Performance of a polarization-masked lens aperture in the presence of spherical aberration," J. Opt. A: Pure and Applied Optics,  4,98-104 (2002).
[CrossRef]

Dowski, E. R.

English, R. E.

George, N.

Ghosh, A.

Kirk, I.

Linfoot, E. H.

E. H. Linfoot and E. Wolf, "Diffraction images in systems with an annular aperture," Proc. Phys. Soc. B 66,145-149 (1953).
[CrossRef]

Marom, E.

Mathews, T. R.

McOwan, P.W.

P.W. McOwan, M. S. Gordon andW. J. Hossack, "A switchable liquid crystal binary Gabor lens," Opt. Commun. 103,189-193 (1993).
[CrossRef]

Motamedi, M.

Murata, K.

Ojeda-Castaneda, J.

Poon, T-C

Sanyal, S.

D. R. Chowdhury, K. Bhattacharya, S. Sanyal and A. K. Chakraborty, "Performance of a polarization-masked lens aperture in the presence of spherical aberration," J. Opt. A: Pure and Applied Optics,  4,98-104 (2002).
[CrossRef]

Wolf, E.

E. H. Linfoot and E. Wolf, "Diffraction images in systems with an annular aperture," Proc. Phys. Soc. B 66,145-149 (1953).
[CrossRef]

Zalevsky, Z.

Zlotnik, A.

Appl. Opt.

J. Opt. A: Pure and Applied Optics

D. R. Chowdhury, K. Bhattacharya, S. Sanyal and A. K. Chakraborty, "Performance of a polarization-masked lens aperture in the presence of spherical aberration," J. Opt. A: Pure and Applied Optics,  4,98-104 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

P.W. McOwan, M. S. Gordon andW. J. Hossack, "A switchable liquid crystal binary Gabor lens," Opt. Commun. 103,189-193 (1993).
[CrossRef]

Opt. Lett.

Proc. Phys. Soc. B

E. H. Linfoot and E. Wolf, "Diffraction images in systems with an annular aperture," Proc. Phys. Soc. B 66,145-149 (1953).
[CrossRef]

Other

P. Yeh and C. Gu, Optics of Liquid Crystal Displays, (John Wiley & Sons, Inc., New York, 1999). Chapter 9 and references therein.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The extended depth of field imaging setup with a polarization coded aperture.

Fig. 2.
Fig. 2.

The IPSFs of diffraction limited lens for central aperture; ring aperture and full aperture.

Fig. 3.
Fig. 3.

The IPSFs of diffraction limited lens for a lens with polarization coded aperture.

Fig. 4.
Fig. 4.

The IPSFs of diffraction limited lens for a lens with conventional aperture.

Fig. 5.
Fig. 5.

The OTFs of diffraction limited lens for a lens with polarization coded aperture.

Fig. 6.
Fig. 6.

The OTFs of diffraction limited lens for a lens with conventional circular aperture.

Fig. 7.
Fig. 7.

The setup for pixelated zone plate. Left: setup; Right: pixelated zone plate

Fig. 8.
Fig. 8.

A pixelated Fresnel zone plate. White pixel: no change in polarization; black pixel: polarization rotate 90°.

Fig. 9.
Fig. 9.

Axial intensity of pixelated zone plates with and without polarization coded aperture. Thick red line: pixelated zone plate with polarization coded aperture as shown in Fig. 8; Thin blue line: pixelated zone plate without polarization coding.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( ρ ) = 0 r r J 0 ( 2 πr ρ λt ) exp [ i 2 πW λ ( r R ) 2 ] dr 2 + r R r J 0 ( 2 πr ρ λt ) exp [ i 2 πW λ ( r R ) 2 ] dr 2 ,
E mn = A y n a 2 y n + a 2 x m a 2 x m a 2 f f 2 + x 2 + y 2 exp ( i 2 π λ f 2 + x 2 + y 2 ) dxdy ,
I P = π 2 ϕ mn < π 2 E mn 2 + π ϕ mn < π 2 or π 2 ϕ mn < π E mn 2 .
I P 2 π 2 ϕ mn < π 2 E mn 2 .
t ( r ) = n = 1 2 N 1 ( 1 ) n + 1 circ ( r r n ) ,
E ( z ) = n = 1 2 N 1 ( 1 ) n + 1 E z n ,
E z n = E 0 [ exp ( i 2 π λ z ) z z 2 + r n 2 exp ( i 2 π λ z 2 + r n 2 ) ] .
I ( z ) = C e i 2 π λ z + n = 1 2 N 1 ( 1 ) n z z 2 + nλf exp ( i 2 π λ z 2 + nλf ) 2 ,

Metrics