Abstract

A novel photonic microwave notch filter with both negative and positive coefficients is proposed and demonstrated using a single optical source. These coefficients are generated in a highly nonlinear fiber by cross polarization modulation effect and guided through a high birefringence fiber, and finally detected. Due to the orthogonal polarity between the two coefficients, the proposed filter has a stable transfer response and no resonance peaks at baseband. The experimental results showed a stable notch filter characteristic with the free spectral range of 3.97 GHz over the range of 15 GHz.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Otrega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
    [CrossRef]
  2. B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
    [CrossRef]
  3. K. Sasayama, M. Okuno, and K. Habara, “Coherent optical transversal filter using silica-based waveguides for high-speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
    [CrossRef]
  4. W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber delay line filter free of limitation imposed by optical coherence,” Electron. Lett. 35, 2133–2134 (1999).
    [CrossRef]
  5. S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
    [CrossRef]
  6. F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
    [CrossRef]
  7. D. B. Hunter, “Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator,” Electron. Lett. 40, 856–857 (2004).
    [CrossRef]
  8. L. Moller, S. Yikai, L. Xiang, J. Leuthold, and X. Chongjin, “Ultrahigh-speed optical phase correlated data signals,” IEEE Photon. Technol. Lett. 15, 1597–1599 (2003).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear fiber optics 3rd ed. pp. 210–216 (Jamestown Road, UK:Academic Press, 2001).
  10. J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45, 1390–1397 (1997).
    [CrossRef]
  11. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18, 298–300 (2006).
    [CrossRef]
  12. D. -H. Kim and J. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12, 4490–4495 (2004).
    [CrossRef] [PubMed]

2006 (1)

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18, 298–300 (2006).
[CrossRef]

2005 (1)

2004 (2)

D. B. Hunter, “Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator,” Electron. Lett. 40, 856–857 (2004).
[CrossRef]

D. -H. Kim and J. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12, 4490–4495 (2004).
[CrossRef] [PubMed]

2003 (1)

L. Moller, S. Yikai, L. Xiang, J. Leuthold, and X. Chongjin, “Ultrahigh-speed optical phase correlated data signals,” IEEE Photon. Technol. Lett. 15, 1597–1599 (2003).
[CrossRef]

1999 (1)

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber delay line filter free of limitation imposed by optical coherence,” Electron. Lett. 35, 2133–2134 (1999).
[CrossRef]

1997 (2)

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45, 1390–1397 (1997).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

1995 (1)

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

1991 (1)

K. Sasayama, M. Okuno, and K. Habara, “Coherent optical transversal filter using silica-based waveguides for high-speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

1984 (1)

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear fiber optics 3rd ed. pp. 210–216 (Jamestown Road, UK:Academic Press, 2001).

Bennion, I.

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber delay line filter free of limitation imposed by optical coherence,” Electron. Lett. 35, 2133–2134 (1999).
[CrossRef]

Capmany, J.

J. Capmany, B. Otrega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Chongjin, X.

L. Moller, S. Yikai, L. Xiang, J. Leuthold, and X. Chongjin, “Ultrahigh-speed optical phase correlated data signals,” IEEE Photon. Technol. Lett. 15, 1597–1599 (2003).
[CrossRef]

Coppinger, F.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

Fan, J. C.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45, 1390–1397 (1997).
[CrossRef]

Goodman, J. W.

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Habara, K.

K. Sasayama, M. Okuno, and K. Habara, “Coherent optical transversal filter using silica-based waveguides for high-speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18, 298–300 (2006).
[CrossRef]

Hunter, D. B.

D. B. Hunter, “Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator,” Electron. Lett. 40, 856–857 (2004).
[CrossRef]

Jalali, B.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

Kang, J.

Kazovsky, L. G.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45, 1390–1397 (1997).
[CrossRef]

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18, 298–300 (2006).
[CrossRef]

Kim, D. -H.

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18, 298–300 (2006).
[CrossRef]

Leuthold, J.

L. Moller, S. Yikai, L. Xiang, J. Leuthold, and X. Chongjin, “Ultrahigh-speed optical phase correlated data signals,” IEEE Photon. Technol. Lett. 15, 1597–1599 (2003).
[CrossRef]

Lu, C. L.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45, 1390–1397 (1997).
[CrossRef]

Marti, J.

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Moller, L.

L. Moller, S. Yikai, L. Xiang, J. Leuthold, and X. Chongjin, “Ultrahigh-speed optical phase correlated data signals,” IEEE Photon. Technol. Lett. 15, 1597–1599 (2003).
[CrossRef]

Moslehi, B.

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18, 298–300 (2006).
[CrossRef]

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18, 298–300 (2006).
[CrossRef]

Okuno, M.

K. Sasayama, M. Okuno, and K. Habara, “Coherent optical transversal filter using silica-based waveguides for high-speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

Otrega, B.

Pastor, D.

J. Capmany, B. Otrega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Sales, S.

J. Capmany, B. Otrega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

Sasayama, K.

K. Sasayama, M. Okuno, and K. Habara, “Coherent optical transversal filter using silica-based waveguides for high-speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

Shaw, H. J.

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18, 298–300 (2006).
[CrossRef]

Trinh, P. D.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

Tur, M.

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Williams, J. A. R.

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber delay line filter free of limitation imposed by optical coherence,” Electron. Lett. 35, 2133–2134 (1999).
[CrossRef]

Xiang, L.

L. Moller, S. Yikai, L. Xiang, J. Leuthold, and X. Chongjin, “Ultrahigh-speed optical phase correlated data signals,” IEEE Photon. Technol. Lett. 15, 1597–1599 (2003).
[CrossRef]

Yegnanarayanan, S.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

Yikai, S.

L. Moller, S. Yikai, L. Xiang, J. Leuthold, and X. Chongjin, “Ultrahigh-speed optical phase correlated data signals,” IEEE Photon. Technol. Lett. 15, 1597–1599 (2003).
[CrossRef]

Zhang, W.

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber delay line filter free of limitation imposed by optical coherence,” Electron. Lett. 35, 2133–2134 (1999).
[CrossRef]

Electron. Lett. (4)

W. Zhang, J. A. R. Williams, and I. Bennion, “Optical fiber delay line filter free of limitation imposed by optical coherence,” Electron. Lett. 35, 2133–2134 (1999).
[CrossRef]

S. Sales, J. Capmany, J. Marti, and D. Pastor, “Experimental demonstration of fiber-optic delay line filters with negative coefficients,” Electron. Lett. 31, 1095–1096 (1995).
[CrossRef]

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical incoherent negative taps for photonic signal processing,” Electron. Lett. 33, 973–975 (1997).
[CrossRef]

D. B. Hunter, “Incoherent bipolar tap microwave photonic filter based on balanced bridge electro-optic modulator,” Electron. Lett. 40, 856–857 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. Moller, S. Yikai, L. Xiang, J. Leuthold, and X. Chongjin, “Ultrahigh-speed optical phase correlated data signals,” IEEE Photon. Technol. Lett. 15, 1597–1599 (2003).
[CrossRef]

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Wide-band tunable wavelength conversion of 10-Gb/s nonreturn-to-zero signal using cross-phase-modulation-induced polarization rotation in 1-m bismuth oxide-based nonlinear optical fiber,” IEEE Photon. Technol. Lett. 18, 298–300 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45, 1390–1397 (1997).
[CrossRef]

J. Lightwave Technol. (2)

J. Capmany, B. Otrega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23, 702–723 (2005).
[CrossRef]

K. Sasayama, M. Okuno, and K. Habara, “Coherent optical transversal filter using silica-based waveguides for high-speed signal processing,” J. Lightwave Technol. 9, 1225–1230 (1991).
[CrossRef]

Opt. Express (1)

Proc. IEEE (1)

B. Moslehi, J. W. Goodman, M. Tur, and H. J. Shaw, “Fiber-optic lattice signal processing,” Proc. IEEE 72, 909–930 (1984).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear fiber optics 3rd ed. pp. 210–216 (Jamestown Road, UK:Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A schematic to describe the photonic microwave notch filter with both coefficients, Inset: direct-form realization of a digital filter system. HNLF: highly nonlinear fiber, BPF: optical bandpass filter, PSD: polarization selective device, PD: photodetector.

Fig. 2.
Fig. 2.

Experimental setup. TLS: tunable laser source, PC: polarization controller, AMP: broadband electrical amplifier, EOM: LiNbO3 electro-optic modulator, EDFA: erbium doped fiber amplifier, Hi-Bi: high birefringence fiber.

Fig. 3.
Fig. 3.

Measured inverted and non-inverted signals from the ‘10111100’ data patterns at 10-Gb/s.

Fig. 4.
Fig. 4.

Measured transfer response of the photonic microwave notch filter.

Fig. 5.
Fig. 5.

Variation of free spectral range with probe wavelength for 200-m-long Hi-Bi fiber.

Fig. 6.
Fig. 6.

Measured spurious-free dynamic range for the proposed filter.

Metrics