Abstract

We present a numerical study of the performance of 40 Gbit/s return-to-zero differential phase-shift keying (RZ-DPSK) transmission with different dispersion maps. The optimum dispersion mapping for RZ-DPSK format are discussed and compared with those for on-off keying (OOK). Two pseudo-linear transmission systems, one using standard single-mode fiber and the other nonzero dispersion-shifted fiber, are investigated, respectively. In principle, the optimum dispersion mapping for RZ-DPSK format is different from that for OOK and depends on intra-channel four-wave mixing and nonlinear phase noise.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmission," IEEE J. Select. Topics Quantum Electron. 10, 281-293 (2004).
    [CrossRef]
  2. A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," IEEE/OSA J Lightwave Technol. 23, 115-130 (2005).
    [CrossRef]
  3. I. P. Kaminow and T. Li, eds. Optical Fiber Telecommunications IV B: Systems and Impairments, (Academic Press, San Diego, 2002), Chapter 6.
  4. A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, "Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses," IEEE Photon. Technol. Lett. 13, 445-447 (2001).
    [CrossRef]
  5. R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, " Reduction of intrachannel nonlinear distortion in 40Gb/s-based WDM Transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
    [CrossRef]
  6. H. Wei and D. V. Plant, "Intra-channel nonlinearity compensation with scaled translation symmetry," Opt. Express 12, 4282-4296 (2004).
    [CrossRef] [PubMed]
  7. X. Wei and X. Liu, "Analysis of intrachannel four-wave mixing in differential phase-shift keying transmission with large dispersion," Opt. Lett. 28, 2300-2302 (2003).
    [CrossRef] [PubMed]
  8. F. Zhang, C-A. Bunge, and K. Petermann, "Analysis of nonlinear phase noise in single-channel return-to-zero differential phase-shift keying transmission systems," Opt. Lett. 31,1038-1040 (2006).
    [CrossRef] [PubMed]
  9. X. Wei, X. Liu, S. H. Simmon, and C. J. McKinstrie, "Intrachannel four-wave mixing in highly dispersed transmission with a nonsymmetric dispersion map," Opt. Lett. 31, 29-31 (2006).
    [CrossRef] [PubMed]
  10. L. D. Coelho and N. Hanik, "Higher order modulation formats for high-speed transmission systems," Workshop on Optical Transmission and Equalization, Shanghai, China, November 2005, S. 13-14.
  11. L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photo. Technol. Lett. 16, 1591-1593 (2004).
    [CrossRef]
  12. Chongjin Xie, Lothar Möller, Herbert Haunstein, and Stefan Hunsche, "Comparison of system tolerance to polarization-mode dispersion between different modulation formats," IEEE Photo. Technol. Lett. 15, 1168-1170 (2003).
    [CrossRef]
  13. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2000), Chapter 5.
  14. A. Richter, I. Koltchanov, K. Kuzmin, and E. Myslivets, "Issues on Bit-error rate estimation for fiber-optic communication systems," OFC2005, paper NTuH3.
  15. G. H. Einarsson, Principles of Lightwave Communications (John Wiley & Sons, New York, 1996), Appendix E.
  16. <jrn>. A. Chowdhury, G. Raybon, R.-J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. Richard, and D. S. Chandrasekhar, "Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation," IEEE/OSA J Lightwave Technol. 23, 172-177 (2005).</jrn>
    [CrossRef]

2006

2004

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photo. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmission," IEEE J. Select. Topics Quantum Electron. 10, 281-293 (2004).
[CrossRef]

H. Wei and D. V. Plant, "Intra-channel nonlinearity compensation with scaled translation symmetry," Opt. Express 12, 4282-4296 (2004).
[CrossRef] [PubMed]

2003

X. Wei and X. Liu, "Analysis of intrachannel four-wave mixing in differential phase-shift keying transmission with large dispersion," Opt. Lett. 28, 2300-2302 (2003).
[CrossRef] [PubMed]

Chongjin Xie, Lothar Möller, Herbert Haunstein, and Stefan Hunsche, "Comparison of system tolerance to polarization-mode dispersion between different modulation formats," IEEE Photo. Technol. Lett. 15, 1168-1170 (2003).
[CrossRef]

2001

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, "Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses," IEEE Photon. Technol. Lett. 13, 445-447 (2001).
[CrossRef]

2000

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, " Reduction of intrachannel nonlinear distortion in 40Gb/s-based WDM Transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
[CrossRef]

Bayvel, P.

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, " Reduction of intrachannel nonlinear distortion in 40Gb/s-based WDM Transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
[CrossRef]

Bunge, C-A.

Chraplyvy, A. R.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photo. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Clausen, C. B.

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, "Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses," IEEE Photon. Technol. Lett. 13, 445-447 (2001).
[CrossRef]

Essiambre, R.-J.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photo. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Gnauck, A. H.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photo. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, "Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses," IEEE Photon. Technol. Lett. 13, 445-447 (2001).
[CrossRef]

Killey, R. I.

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, " Reduction of intrachannel nonlinear distortion in 40Gb/s-based WDM Transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
[CrossRef]

Liu, X.

McKinstrie, C. J.

Mecozzi, A.

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, "Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses," IEEE Photon. Technol. Lett. 13, 445-447 (2001).
[CrossRef]

Mikhailov, V.

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, " Reduction of intrachannel nonlinear distortion in 40Gb/s-based WDM Transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
[CrossRef]

Park, S.-G.

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, "Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses," IEEE Photon. Technol. Lett. 13, 445-447 (2001).
[CrossRef]

Petermann, K.

Plant, D. V.

Shtaif, M.

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, "Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses," IEEE Photon. Technol. Lett. 13, 445-447 (2001).
[CrossRef]

Simmon, S. H.

Thiele, H. J.

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, " Reduction of intrachannel nonlinear distortion in 40Gb/s-based WDM Transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
[CrossRef]

Wei, H.

Wei, X.

Wickham, L. K.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photo. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Winzer, P. J.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photo. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Xu, C.

C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmission," IEEE J. Select. Topics Quantum Electron. 10, 281-293 (2004).
[CrossRef]

Zhang, F.

IEEE J. Select. Topics Quantum Electron.

C. Xu, X. Liu, and X. Wei, "Differential phase-shift keying for high spectral efficiency optical transmission," IEEE J. Select. Topics Quantum Electron. 10, 281-293 (2004).
[CrossRef]

IEEE Photo. Technol. Lett.

L. K. Wickham, R.-J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, "Bit pattern length dependence of intrachannel nonlinearities in pseudolinear transmission," IEEE Photo. Technol. Lett. 16, 1591-1593 (2004).
[CrossRef]

Chongjin Xie, Lothar Möller, Herbert Haunstein, and Stefan Hunsche, "Comparison of system tolerance to polarization-mode dispersion between different modulation formats," IEEE Photo. Technol. Lett. 15, 1168-1170 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, "Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses," IEEE Photon. Technol. Lett. 13, 445-447 (2001).
[CrossRef]

R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, " Reduction of intrachannel nonlinear distortion in 40Gb/s-based WDM Transmission over standard fiber," IEEE Photon. Technol. Lett. 12, 1624-1626 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Other

L. D. Coelho and N. Hanik, "Higher order modulation formats for high-speed transmission systems," Workshop on Optical Transmission and Equalization, Shanghai, China, November 2005, S. 13-14.

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2000), Chapter 5.

A. Richter, I. Koltchanov, K. Kuzmin, and E. Myslivets, "Issues on Bit-error rate estimation for fiber-optic communication systems," OFC2005, paper NTuH3.

G. H. Einarsson, Principles of Lightwave Communications (John Wiley & Sons, New York, 1996), Appendix E.

<jrn>. A. Chowdhury, G. Raybon, R.-J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. Richard, and D. S. Chandrasekhar, "Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation," IEEE/OSA J Lightwave Technol. 23, 172-177 (2005).</jrn>
[CrossRef]

A. H. Gnauck and P. J. Winzer, "Optical phase-shift-keyed transmission," IEEE/OSA J Lightwave Technol. 23, 115-130 (2005).
[CrossRef]

I. P. Kaminow and T. Li, eds. Optical Fiber Telecommunications IV B: Systems and Impairments, (Academic Press, San Diego, 2002), Chapter 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

OSNR Penalty due to IFWM effect as a function of pre-compensation after 50×90 km spans RZ-DPSK transmission.

Fig. 2.
Fig. 2.

Nonlinear OSNR Penalty for RZ-OOK format as a function of pre-compensation after 50×90 km spans transmission.

Fig. 3.
Fig. 3.

OSNR Penalty due to IFWM effect as a function of pre-compensation after 10×90 km spans RZ-DPSK transmission.

Fig. 4.
Fig. 4.

BER for RZ-DPSK format as a function of pre-compensation after 50×90 km spans transmission.

Tables (1)

Tables Icon

Table 1. Optimum pre-compensation for OOK and RZ-DPSK systems

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D pre = N span D res 2 + D α In [ 1 + exp ( α L span ) 2 ]
Φ ( s ) = Φ 1 ( s ) Φ 2 ( s ) , with Φ 1 ( s ) = 1 ( 1 + s N 1 ) M 1 exp ( sE 1 + s N 1 ) , Φ 2 ( s ) = 1 ( 1 s N 2 ) M 2

Metrics