Abstract

A comparison is made between rigorous numerical results and a recently proposed analytical method for modeling light diffraction by lamellar diffraction gratings. The conclusion is that the analytical model is quite restrained in its applicability and can be misleading in determining the behavior of the grating efficiencies.

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Absorption of light by extremely shallow metallic gratings: metamaterial behavior

Evgeny Popov, Stefan Enoch, and Nicolas Bonod
Opt. Express 17(8) 6770-6781 (2009)

Staircase approximation validity for arbitrary-shaped gratings

Evgeny Popov, Michel Nevière, Boris Gralak, and Gérard Tayeb
J. Opt. Soc. Am. A 19(1) 33-42 (2002)

Scattering of TE-polarized waves by a finite grating: giant resonant enhancement of the electric field within the grooves

O. Mata-Mendez and J. Sumaya-Martinez
J. Opt. Soc. Am. A 14(9) 2203-2211 (1997)

References

  • View by:
  • |
  • |
  • |

  1. A. Benabbas, V. Halté, and J.-Y. Bigot, “Analytical model of the optical response of periodically structured metallic films,” Opt. Express 13, 8730–8745 (2005)
    [Crossref] [PubMed]
  2. O. M. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Phys. Soc. (London) A 79, 399–416 (1907)
    [Crossref]
  3. S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Thans. Microwave Theory Techn. MTT-23, 123–133 (1975)
    [Crossref]
  4. E. I. Krupitsky and B. C. Chernov, “Rigorous analysis of arbitrary slanted volume holographic gratings,” Proc. IX All-Union School of Holography, Leningrad, 84–85 (1977), in Russian.
  5. G. Moharam and T. K. Gayrold, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71, 811–818 (1981), “Rigorous coupled-wave analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72, 1385–1392 (1982)
    [Crossref]
  6. M. Nevière and E. Popov, Light Propagation in Periodic Media, Differential Theory and Design (Marcel Dekker, New York, 2003)

2005 (1)

1975 (1)

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Thans. Microwave Theory Techn. MTT-23, 123–133 (1975)
[Crossref]

1907 (1)

O. M. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Phys. Soc. (London) A 79, 399–416 (1907)
[Crossref]

Benabbas, A.

Bertoni, H. L.

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Thans. Microwave Theory Techn. MTT-23, 123–133 (1975)
[Crossref]

Bigot, J.-Y.

Chernov, B. C.

E. I. Krupitsky and B. C. Chernov, “Rigorous analysis of arbitrary slanted volume holographic gratings,” Proc. IX All-Union School of Holography, Leningrad, 84–85 (1977), in Russian.

Gayrold, T. K.

G. Moharam and T. K. Gayrold, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71, 811–818 (1981), “Rigorous coupled-wave analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72, 1385–1392 (1982)
[Crossref]

Halté, V.

Krupitsky, E. I.

E. I. Krupitsky and B. C. Chernov, “Rigorous analysis of arbitrary slanted volume holographic gratings,” Proc. IX All-Union School of Holography, Leningrad, 84–85 (1977), in Russian.

Lord Rayleigh, O. M.

O. M. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Phys. Soc. (London) A 79, 399–416 (1907)
[Crossref]

Moharam, G.

G. Moharam and T. K. Gayrold, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71, 811–818 (1981), “Rigorous coupled-wave analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72, 1385–1392 (1982)
[Crossref]

Nevière, M.

M. Nevière and E. Popov, Light Propagation in Periodic Media, Differential Theory and Design (Marcel Dekker, New York, 2003)

Peng, S. T.

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Thans. Microwave Theory Techn. MTT-23, 123–133 (1975)
[Crossref]

Popov, E.

M. Nevière and E. Popov, Light Propagation in Periodic Media, Differential Theory and Design (Marcel Dekker, New York, 2003)

Tamir, T.

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Thans. Microwave Theory Techn. MTT-23, 123–133 (1975)
[Crossref]

IEEE Thans. Microwave Theory Techn. (1)

S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Thans. Microwave Theory Techn. MTT-23, 123–133 (1975)
[Crossref]

Opt. Express (1)

Proc. Phys. Soc. (London) A (1)

O. M. Lord Rayleigh, “On the dynamical theory of gratings,” Proc. Phys. Soc. (London) A 79, 399–416 (1907)
[Crossref]

Other (3)

E. I. Krupitsky and B. C. Chernov, “Rigorous analysis of arbitrary slanted volume holographic gratings,” Proc. IX All-Union School of Holography, Leningrad, 84–85 (1977), in Russian.

G. Moharam and T. K. Gayrold, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71, 811–818 (1981), “Rigorous coupled-wave analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am.72, 1385–1392 (1982)
[Crossref]

M. Nevière and E. Popov, Light Propagation in Periodic Media, Differential Theory and Design (Marcel Dekker, New York, 2003)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

. Zeroth transmission order efficiency of a 110 nm thick silver grating on a glass substrate at normal incidence in TM polarization: Groove period equal to 700 nm, groove width 200 nm. (a) Equivalent phase grating with a sinusoidal modulation of electric permittivity. Red curve and the left scale, results of the analytical method, ref.[1], black curve and the right scale, rigorous numerical results. (b) The rigorous numerical results for a lamellar silver grating.

Fig. 2.
Fig. 2.

The same as in fig.1 but for a symmetric structure, cladding, grooves and substrate having optical index of 1. Results for different groove depth (grating thickness), as indicated in the figures. (a) Analytical results reproduced from ref.[1]. (b) numerical results for a true lamellar profile.

Metrics