Abstract

Approximate empirical relations for nonlinear photonic crystal fibers (PCFs) are newly proposed. Replacing a PCF with a conventional step-index fiber, closed form expressions for the effective refractive index and the effective core area of nonlinear PCFs are derived. To define the equivalent cladding index, the effective index of the so-called fundamental space-filling mode, which is calculated using empirical relations for the effective normalized frequency, is introduced, and thus, nonlinear guided waves propagating in PCFs can be easily characterized without the need for numerical computations. The validity of the method proposed here is ensured by comparing the calculated results with those obtained by a full-vector finite-element method.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Empirical relations for simple design of photonic crystal fibers

Kunimasa Saitoh and Masanori Koshiba
Opt. Express 13(1) 267-274 (2005)

Cut-off analysis of 19-cell Yb-doped double-cladding rod-type photonic crystal fibers

F. Poli, E. Coscelli, T. T. Alkeskjold, D. Passaro, A. Cucinotta, L. Leick, J. Broeng, and S. Selleri
Opt. Express 19(10) 9896-9907 (2011)

Broadband single-polarization single-mode photonic crystal fibers with three different background materials

Hui Li, Shu-guang Li, Jian-She Li, Wan Zhang, and Guo-Wen An
Appl. Opt. 54(10) 2851-2856 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Ferrando, M. Zacares, P.F. de Cordoba, D. Binosi, and J.A. Monsoriu, “Spatial soliton formation in photonic crystal fibers,” Opt. Express 11, 452–459 (2003).
    [Crossref] [PubMed]
  2. T. Fujisawa and M. Koshiba, “Finite element characterization of chromatic dispersion in nonlinear holey fibers,” Opt. Express 11, 1481–1489 (2003).
    [Crossref] [PubMed]
  3. A. Ferrando, M. Zacares, P.F. de Cordoba, D. Binosi, and J.A. Monsoriu, “Vortex solitons in photonic crystal fibers,” Opt. Express 12, 817–822 (2004).
    [Crossref] [PubMed]
  4. A. Ferrando, M. Zacares, P. Andrees, P.F. de Cordoba, and J.A. Monsoriu, “Nodal solitons and the nonlinear breaking of discrete symmetry,” Opt. Express 13, 1072–1078 (2005).
    [Crossref] [PubMed]
  5. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739–1741 (2004).
    [Crossref] [PubMed]
  6. R.A. Sammut and C. Pask, “Gaussian and equivalent-step-index approximations for nonlinear waveguides,” J. Opt. Soc. Am. B 8, 395–402 (1991).
    [Crossref]
  7. Y. Chen, “Nonlinear fibers with arbitrary nonlinearity,” J. Opt. Soc. Am. B 8, 2338–2341 (1991).
    [Crossref]
  8. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267–274 (2005).
    [Crossref] [PubMed]
  9. R.Y. Chiao, E. Garmire, and C.H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
    [Crossref]
  10. G. Fibich and A.L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett. 25, 335–337 (2000).
    [Crossref]

2005 (2)

2004 (2)

2003 (2)

2000 (1)

1991 (2)

1964 (1)

R.Y. Chiao, E. Garmire, and C.H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Andrees, P.

Binosi, D.

Chen, Y.

Chiao, R.Y.

R.Y. Chiao, E. Garmire, and C.H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

de Cordoba, P.F.

Ferrando, A.

Fibich, G.

Fujisawa, T.

Gaeta, A.L.

Garmire, E.

R.Y. Chiao, E. Garmire, and C.H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Koshiba, M.

Monsoriu, J.A.

Pask, C.

Saitoh, K.

Sammut, R.A.

Townes, C.H.

R.Y. Chiao, E. Garmire, and C.H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Zacares, M.

J. Opt. Soc. Am. B (2)

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R.Y. Chiao, E. Garmire, and C.H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) A geometry of PCF and (b) its equivalent classical optical fiber model.

Fig. 2.
Fig. 2.

Effective refractive index with nonsaturable nonlinearity as a function of P/Pc for λ/Λ=(a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4.

Fig. 3.
Fig. 3.

Field distributions of nonlinear PCFs with d/Λ=0.4 and P/Pc =0.9, for λ/Λ=(a) 0.1 and (b) 0.4.

Fig. 4.
Fig. 4.

Errors of approximate empirical relations as a function of the normalized power for λ/Λ=(a) 0.1, (b) 0.4, and (c) 1.5.

Fig. 5.
Fig. 5.

Normalized effective core area with nonsaturable nonlinearity as a function of P/Pc for λ/Λ=(a) 0.1, (b) 0.2, (c) 0.3, and (d) 0.4.

Fig. 6.
Fig. 6.

Effective refractive index with saturable nonlinearity as a function of P/Pc for d/Λ (a)=0.4 and (b)=0.8, where the normalized wavelength is λ/Λ=0.1.

Fig. 7.
Fig. 7.

Effective refractive index with saturable nonlinearity as a function of P/Pc for d/Λ (a)=0.4 and (b)=0.8, where the normalized wavelength is λ/Λ=0.4

Fig. 8.
Fig. 8.

Normalized effective core area with saturable nonlinearity as a function of P/Pc for d/Λ (a)=0.4 and (b)=0.8, where the normalized wavelength is λ/Λ=0.1.

Fig. 9.
Fig. 9.

Normalized effective core area with saturable nonlinearity as a function of P/Pc for d/Λ(a)=0.4 and (b)=0.8, where the normalized wavelength is λ/Λ=0.4.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

V ( λ Λ , d Λ ) = 2 π λ a eff n co 2 n cl 2
= A 1 ( d Λ ) + A 2 ( d Λ ) 1 + A 3 ( d Λ ) exp { A 4 ( d Λ ) λ Λ }
n 2 = n L 2 + n L 2 n 2 Z 0 E 2
ϕ = A exp ( r 2 w 2 )
n eff 2 = n co 2 1 k 0 2 ( 1 a eff 2 + 2 w 2 ) + n co 2 n 2 w 2 A 2 8 Z 0 ( 1 a eff 2 + 4 w 2 ) .
w = a eff ln V NL
V NL = V 1 k 0 2 n co 2 n 2 w 2 A 2 8 Z 0 .
P = 0 2 π 0 n co ϕ 2 2 Z 0 r d r d θ = π n co w 2 A 2 4 Z 0
P c = λ 2 2 π n co n 2 ,
n eff 2 = n co 2 ( λ 2 π a eff ) 2 [ 1 + 2 ln V NL P P c ( 1 + 4 ln V NL ) ] .
A eff = π w 2 = π a eff 2 ln V NL .
V NL = V 1 P P c .
n 2 = ( n sat 2 n cl 2 ) { 1 exp [ n cl 2 n 2 Z 0 ( n sat 2 n cl 2 ) E 2 ] }
n eff 2 = n co 2 ( λ 2 π a eff ) 2 [ 1 R 0 2 + V 2 exp ( 1 R 0 2 ) ]
+ ( λ 2 π a eff ) 2 V sat 2 { 1 1 Q [ 1 exp ( Q ) ] }
R 0 = w 2 a eff ,
V sat = k 0 a eff n sat 2 n cl 2 ,
Q = 4 P V sat 2 R 0 2 P c ,
1 V 2 [ 1 P P c m = 0 ( Q ) m ( 1 + 0.5 m ) 2 m ! ] = exp ( 1 R 0 2 )
A eff = 2 π R 0 2 a eff 2 = 2 π R 0 2 3 Λ 2 .
Δ n eff = n eff n eff , FEM n eff , FEM
n eff 2 = n co 2 1 2 ( 3 λ 2 π Λ ) 2 .

Metrics