Abstract

This article describes a novel non-contact fluorescence optical tomography scheme which utilizes multiple area illumination patterns, to reduce the ill-posedness of the inverse problem involved in recovering interior fluorescence yield distributions in biological tissue from boundary fluorescence measurements. The image reconstruction is posed as an optimization problem which seeks a tissue optical property distribution minimizing, for all illumination patterns simultaneously, a regularized difference between the observed boundary measurements of light distribution, and the boundary measurements predicted from a physical model. Multiple excitation source illumination patterns are described by line and Gaussian sources scanning the simulated tissue phantom surface and by employing diffractive optics-generated patterns. Multiple measurement data sets generated by scanning excitation sources are processed simultaneously to generate the interior fluorescence distribution in tissue by implementing the fluorescence tomography algorithm in a parallel framework suitable for multiprocessor computers. Image reconstructions for single and multiple fluorescent targets (5mm diameter) embedded in a 512ml simulated tissue phantom are demonstrated, with depths of the fluorescent targets from the illumination plane between 1cm to 2cm. We show both qualitative and quantitative improvements of our algorithm over reconstructions from only a single measurement.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Luminescence 60, 281-286 (1994).
    [CrossRef]
  2. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 20, 426-428 (1996).
  3. E. M. Sevick-Muraca and C. L. Burch, "The origin of phosphorescent and fluorescent signals in tissues," Opt. Lett. 19, 1928-1930 (1994).
    [CrossRef] [PubMed]
  4. E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
    [CrossRef]
  5. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogenous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt. 35, 3746-3758 (1996).
    [CrossRef] [PubMed]
  6. X. D. Li, B. Chance, and A. G. Yodh, "Fluorescent heterogeneities in turbid media: limits for detection, characterization, and comparison with absorption," Appl. Opt. 37, 6833-6844 (1998).
    [CrossRef]
  7. J. C. Schotland, "Continuous wave diffusion imaging," J. Opt. Soc. Am. A 14, 275-279 (1997).
    [CrossRef]
  8. V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche. "Inverse method 3-D reconstruction of localized in vivo fluorescence-application to Sjøgren syndrome," IEEE J. Sel. Top. Quantum Electron. 54, 930-935 (1999).
  9. J. Wu, Y. Wang, L. Perleman, I. Itzkan, R. R. Desai, and M. S. Feld, "Time resolved multichannel imaging of fluorescent objects embedded in turbid media," Opt. Lett. 20, 489-491 (1995).
    [CrossRef] [PubMed]
  10. E. L. Hull, M. G. Nichols, and T. H. Foster, "Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of CW diffuse luminescence emittance," Appl. Opt. 37, 2755-2765 (1998).
    [CrossRef]
  11. A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003).
    [CrossRef]
  12. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three dimensional near infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. Nat. Acad. Sci. 99, 9619-9624 (2002).
    [CrossRef] [PubMed]
  13. R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
    [CrossRef] [PubMed]
  14. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
    [CrossRef] [PubMed]
  15. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
    [CrossRef] [PubMed]
  16. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
    [PubMed]
  17. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
    [CrossRef] [PubMed]
  18. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
    [CrossRef] [PubMed]
  19. G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
    [CrossRef] [PubMed]
  20. A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, and K. J. Webb, "Statistical approach for detection and localization of a fluorescing mouse tumor in intralipid," Appl. Opt. 44, 2300 (2005).
    [CrossRef] [PubMed]
  21. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
    [CrossRef] [PubMed]
  22. A. B. Thompson and E. M. Sevick-MuracaNIR fluorescence contrast enhanced imaging with ICCD homodyne detection: Measurement precision and accuracy." J. Biomed. Opt. 8, 111-120 (2002).
    [CrossRef]
  23. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, "Adaptive finite element modeling of optical fluorescenceenhanced tomography," Opt. Express 12, 5402-5417 (2004).
    [CrossRef] [PubMed]
  24. A. Joshi, W. Bangerth, K. Hwang, J. Rasmussen, and E. M. Sevick-Muraca," "Plane wave fluorescence tomography with adaptive finite elements," Opt. Lett. 31, 193-195 (2006).
    [CrossRef] [PubMed]
  25. J. Nocedal and S. J. Wright. Numerical Optimization. (New York: Springer, 1999).
    [CrossRef]
  26. R. Roy and E. M. Sevick-Muraca, "Truncated Newton’s optimization schemes for absorption and fluorescence optical tomography: Part(1) theory and formulation," Opt. Express 4, 353-371 (1999).
    [CrossRef] [PubMed]
  27. W. Bangerth, Adaptive Finite Element Methods for the Identification of Distributed Coefficients in Partial Differential Equations. PhD thesis, University of Heidelberg, 2002.
  28. W. Bangerth, R. Hartmann, and G. Kanschat, deal. II Differential Equations Analysis Library, Technical Reference, 2006. http://www.dealii.org/
  29. W. Bangerth, A. Joshi and E. M. Sevick-Muraca, "Adaptive finite element methods for increased resolution in fluorescence optical tomography," Progr. Biomed. Optics Imag. 6, 318-329 (2005).
  30. "Development of a new optical imaging modality for detection of fluorescence enhanced disease," PhD dissertation, Texas A & M University, 2003.
  31. D. L. Everitt, S. Wei, and X. D. Zhu, "Analysis and optimization of diffuse photon optical tomography of turbid media," Phys. Rev. E 62, 2924-2936 (2000).
    [CrossRef]
  32. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis," Opt. Lett. 26, 701-703 (2001).
    [CrossRef]
  33. H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
    [CrossRef] [PubMed]
  34. E. E. Graves, J. P. Culver, J. Ripoll, and R. Weissleder, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
    [CrossRef]
  35. B.W. Pogue, T. O. McBride, U. L. Osterberg, and K. T. Paulsen, "Comparison of imaging geometries for diffuse optical tomography," Opt. Express 4, 270-286 (1999).
    [CrossRef] [PubMed]

2006 (1)

2005 (5)

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, and K. J. Webb, "Statistical approach for detection and localization of a fluorescing mouse tumor in intralipid," Appl. Opt. 44, 2300 (2005).
[CrossRef] [PubMed]

W. Bangerth, A. Joshi and E. M. Sevick-Muraca, "Adaptive finite element methods for increased resolution in fluorescence optical tomography," Progr. Biomed. Optics Imag. 6, 318-329 (2005).

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (5)

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003).
[CrossRef]

2002 (2)

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three dimensional near infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. Nat. Acad. Sci. 99, 9619-9624 (2002).
[CrossRef] [PubMed]

A. B. Thompson and E. M. Sevick-MuracaNIR fluorescence contrast enhanced imaging with ICCD homodyne detection: Measurement precision and accuracy." J. Biomed. Opt. 8, 111-120 (2002).
[CrossRef]

2001 (2)

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis," Opt. Lett. 26, 701-703 (2001).
[CrossRef]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

2000 (1)

D. L. Everitt, S. Wei, and X. D. Zhu, "Analysis and optimization of diffuse photon optical tomography of turbid media," Phys. Rev. E 62, 2924-2936 (2000).
[CrossRef]

1999 (3)

1998 (2)

1997 (2)

J. C. Schotland, "Continuous wave diffusion imaging," J. Opt. Soc. Am. A 14, 275-279 (1997).
[CrossRef]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef]

1996 (2)

1995 (1)

1994 (2)

E. M. Sevick-Muraca and C. L. Burch, "The origin of phosphorescent and fluorescent signals in tissues," Opt. Lett. 19, 1928-1930 (1994).
[CrossRef] [PubMed]

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Luminescence 60, 281-286 (1994).
[CrossRef]

Bangerth, W.

Boas, D.

A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003).
[CrossRef]

Boas, D. A.

Bouman, C. A.

A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, and K. J. Webb, "Statistical approach for detection and localization of a fluorescing mouse tumor in intralipid," Appl. Opt. 44, 2300 (2005).
[CrossRef] [PubMed]

A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003).
[CrossRef]

Burch, C. L.

Chance, B.

Chernomordik, V.

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche. "Inverse method 3-D reconstruction of localized in vivo fluorescence-application to Sjøgren syndrome," IEEE J. Sel. Top. Quantum Electron. 54, 930-935 (1999).

Choe, R.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Corlu, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Culver, J. P.

Dehghani, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Desai, R. R.

Dunn, J. F.

H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Durduran, T.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Eppstein, M. J.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three dimensional near infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. Nat. Acad. Sci. 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Everitt, D. L.

D. L. Everitt, S. Wei, and X. D. Zhu, "Analysis and optimization of diffuse photon optical tomography of turbid media," Phys. Rev. E 62, 2924-2936 (2000).
[CrossRef]

Feld, M. S.

Foster, T. H.

Gandjbakhche, A. H.

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche. "Inverse method 3-D reconstruction of localized in vivo fluorescence-application to Sjøgren syndrome," IEEE J. Sel. Top. Quantum Electron. 54, 930-935 (1999).

Gannot, I.

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche. "Inverse method 3-D reconstruction of localized in vivo fluorescence-application to Sjøgren syndrome," IEEE J. Sel. Top. Quantum Electron. 54, 930-935 (1999).

Godavarty, A.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three dimensional near infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. Nat. Acad. Sci. 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Graves, E. E.

E. E. Graves, J. P. Culver, J. Ripoll, and R. Weissleder, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Grosicka-Koptyra, M.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Gurfinkel, M.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Hattery, D.

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche. "Inverse method 3-D reconstruction of localized in vivo fluorescence-application to Sjøgren syndrome," IEEE J. Sel. Top. Quantum Electron. 54, 930-935 (1999).

Hawrysz, D. J.

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three dimensional near infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. Nat. Acad. Sci. 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Holboke, M. J.

Hull, E. L.

Hutchinson, C. L.

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef]

Hwang, K.

Itzkan, I.

Joshi, A.

Kennedy, M. D.

Konecky, S. D.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Lee, K.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

Li, X. D.

Lopez, G.

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef]

Low, P. S.

McBride, T. O.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

B.W. Pogue, T. O. McBride, U. L. Osterberg, and K. T. Paulsen, "Comparison of imaging geometries for diffuse optical tomography," Opt. Express 4, 270-286 (1999).
[CrossRef] [PubMed]

Milane, R. P.

A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003).
[CrossRef]

Milstein, A.

A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003).
[CrossRef]

Milstein, A. B.

Nichols, M. G.

Ntziachristos, V.

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis," Opt. Lett. 26, 701-703 (2001).
[CrossRef]

O’Leary, M. A.

Oh, S.

A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003).
[CrossRef]

Osterberg, U. L.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

B.W. Pogue, T. O. McBride, U. L. Osterberg, and K. T. Paulsen, "Comparison of imaging geometries for diffuse optical tomography," Opt. Express 4, 270-286 (1999).
[CrossRef] [PubMed]

Paulsen, K. D.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

Paulsen, K. T.

Paulson, K. D.

H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Perleman, L.

Pogue, B. W.

H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

Pogue, B.W.

Poplack, S. P.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

Rasmussen, J.

Reynolds, J. S.

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef]

Ripoll, J.

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, and R. Weissleder, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Roy, R.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

R. Roy and E. M. Sevick-Muraca, "Truncated Newton’s optimization schemes for absorption and fluorescence optical tomography: Part(1) theory and formulation," Opt. Express 4, 353-371 (1999).
[CrossRef] [PubMed]

Schotland, J. C.

Schulz, R. B.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

A. Joshi, W. Bangerth, K. Hwang, J. Rasmussen, and E. M. Sevick-Muraca," "Plane wave fluorescence tomography with adaptive finite elements," Opt. Lett. 31, 193-195 (2006).
[CrossRef] [PubMed]

W. Bangerth, A. Joshi and E. M. Sevick-Muraca, "Adaptive finite element methods for increased resolution in fluorescence optical tomography," Progr. Biomed. Optics Imag. 6, 318-329 (2005).

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, "Adaptive finite element modeling of optical fluorescenceenhanced tomography," Opt. Express 12, 5402-5417 (2004).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three dimensional near infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. Nat. Acad. Sci. 99, 9619-9624 (2002).
[CrossRef] [PubMed]

A. B. Thompson and E. M. Sevick-MuracaNIR fluorescence contrast enhanced imaging with ICCD homodyne detection: Measurement precision and accuracy." J. Biomed. Opt. 8, 111-120 (2002).
[CrossRef]

R. Roy and E. M. Sevick-Muraca, "Truncated Newton’s optimization schemes for absorption and fluorescence optical tomography: Part(1) theory and formulation," Opt. Express 4, 353-371 (1999).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef]

E. M. Sevick-Muraca and C. L. Burch, "The origin of phosphorescent and fluorescent signals in tissues," Opt. Lett. 19, 1928-1930 (1994).
[CrossRef] [PubMed]

Springet, R.

H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Sunshine Osterman, K.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

Theru, S.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Thompson, A. B.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

A. B. Thompson and E. M. Sevick-MuracaNIR fluorescence contrast enhanced imaging with ICCD homodyne detection: Measurement precision and accuracy." J. Biomed. Opt. 8, 111-120 (2002).
[CrossRef]

Troy, T. L.

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef]

Wang, Y.

Webb, K. J.

A. B. Milstein, M. D. Kennedy, P. S. Low, C. A. Bouman, and K. J. Webb, "Statistical approach for detection and localization of a fluorescing mouse tumor in intralipid," Appl. Opt. 44, 2300 (2005).
[CrossRef] [PubMed]

A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003).
[CrossRef]

Wei, S.

D. L. Everitt, S. Wei, and X. D. Zhu, "Analysis and optimization of diffuse photon optical tomography of turbid media," Phys. Rev. E 62, 2924-2936 (2000).
[CrossRef]

Weissleder, R.

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, and R. Weissleder, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Wells, W. A.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

Wu, J.

Xu, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Yodh, A. G.

Zacharakis, G.

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

Zhang, C.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Zhang, Q.

A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P. Milane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3061-3094 (2003).
[CrossRef]

Zhu, X. D.

D. L. Everitt, S. Wei, and X. D. Zhu, "Analysis and optimization of diffuse photon optical tomography of turbid media," Phys. Rev. E 62, 2924-2936 (2000).
[CrossRef]

Appl. Opt. (5)

IEEE J. Sel. Top. Quantum Electron. (1)

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche. "Inverse method 3-D reconstruction of localized in vivo fluorescence-application to Sjøgren syndrome," IEEE J. Sel. Top. Quantum Electron. 54, 930-935 (1999).

IEEE Trans. Med. Imaging (3)

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: A novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

G. Zacharakis, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Fluorescent protein tomography scanner for small animal imaging," IEEE Trans. Med. Imaging 24, 878-885 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

H. Xu, H. Dehghani, B. W. Pogue, R. Springet, K. D. Paulson, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

A. B. Thompson and E. M. Sevick-MuracaNIR fluorescence contrast enhanced imaging with ICCD homodyne detection: Measurement precision and accuracy." J. Biomed. Opt. 8, 111-120 (2002).
[CrossRef]

J. Luminescence (1)

M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Reradiation and imaging of diffuse photon density waves using fluorescent inhomogeneities," J. Luminescence 60, 281-286 (1994).
[CrossRef]

J. Opt. Soc. Am. A (2)

Med. Phys. (2)

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, and M. Grosicka-Koptyra et al., "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1128-1139 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (6)

Photochem. Photobiol. (1)

E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997).
[CrossRef]

Phys. Med. Biol. (1)

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Phys. Rev. E (1)

D. L. Everitt, S. Wei, and X. D. Zhu, "Analysis and optimization of diffuse photon optical tomography of turbid media," Phys. Rev. E 62, 2924-2936 (2000).
[CrossRef]

Proc. Nat. Acad. Sci. (1)

M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three dimensional near infrared fluorescence tomography with Bayesian methodologies for image reconstruction from sparse and noisy data sets," Proc. Nat. Acad. Sci. 99, 9619-9624 (2002).
[CrossRef] [PubMed]

Progr. Biomed. Optics Imag. (1)

W. Bangerth, A. Joshi and E. M. Sevick-Muraca, "Adaptive finite element methods for increased resolution in fluorescence optical tomography," Progr. Biomed. Optics Imag. 6, 318-329 (2005).

Radiology (1)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. Sunshine Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: Pilot results in the breast," Radiology 218, 261-266 (2001).
[PubMed]

Other (4)

"Development of a new optical imaging modality for detection of fluorescence enhanced disease," PhD dissertation, Texas A & M University, 2003.

W. Bangerth, Adaptive Finite Element Methods for the Identification of Distributed Coefficients in Partial Differential Equations. PhD thesis, University of Heidelberg, 2002.

W. Bangerth, R. Hartmann, and G. Kanschat, deal. II Differential Equations Analysis Library, Technical Reference, 2006. http://www.dealii.org/

J. Nocedal and S. J. Wright. Numerical Optimization. (New York: Springer, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Block structure for the (square) Gauss-Newton matrix (10) for multiple excitation sources. Indices denote the number of the experiment a matrix corresponds to. W is the total number of experiments (excitation illumination patterns or multiple imaging modalities) used. Blocks not shown correspond to matrices with all-zero entries.

Fig. 2.
Fig. 2.

Schematic of the multiple excitation illumination tomography algorithm. The implementation either runs on a single machine, or on a Linux Beowulf cluster where each node is responsible for one or several measurements.

Fig. 3.
Fig. 3.

Source patterns employed for multiple experiment fluorescence optical tomography: scanning lines (left column), scanning Gaussians (center column), diffractive optics patterns (right column)

Fig. 4.
Fig. 4.

State mesh evolution: 5 automatic mesh refinements are depicted for the first illumination source employed in scanning lines (left), scanning Gaussians (center) and diffractive optics patterns (right). Colors indicate arbitrary units of excitation light fluence.

Fig. 5.
Fig. 5.

Single target reconstructions for scanning lines (left), scanning Gaussians (center), and diffractive optics patterns (right). Black wire-frames represent the true target location and size, while the colored blocks depict the reconstructed target. Top 10% of the reconstructed contour levels of fluorescence absorption are shown.

Fig. 6.
Fig. 6.

Three target reconstructions for targets at the same depth of 1cm from the illumination plane: (a) a single Gaussian source, (b) scanning line sources, (c) scanning Gaussian sources, (d) diffractive optics patterns. Black wire-frames represent the true target locations and sizes, while the colored blocks depict reconstructed targets. Top 50% of the contour levels of fluorescence absorption are shown.

Fig. 7.
Fig. 7.

Three target reconstructions for targets at varying depths from the illumination plane: (a) scanning line sources, (b) scanning Gaussian sources, (c) diffractive optics patterns. Left column: Meshes for the reconstruction of the parameter. Right column: Black wire-frames represent the true target locations and sizes, while the colored blocks depict reconstructed targets. Top 80% of the contour levels of fluorescence absorption are shown.

Fig. 8.
Fig. 8.

Three target reconstructions with point illumination (a) point sources employed are numbered, (b) final adaptively refined forward mesh for source 1, (c) reconstructed fluorescence absorption map for the three targets placed at the depth of 1cm with a contour level cutoff at 50% of maximum, (d) reconstructed fluorescence absorption map for the three targets placed at depths of 1cm, 1.5cm, and 2cm with a contour level cutoff at 80% of maximum. Black wire-frames represent the true target locations and sizes, while the colored blocks depict reconstructed targets.

Fig. 9.
Fig. 9.

Singular value spectra of the Gauss-Newton matrix S defined in Eq. (14) with increasing number of lines.

Fig. 10.
Fig. 10.

Increase of useful singular values σ >10-10 for resolving the reconstructed fluorophore image with increasing number W of lines.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

· [ D x u ] + k x u = 0 ,
· [ D m v ] + k m v = β xm u .
2 D x u n + γ u + S = 0 , 2 D m v n + γ v = 0 ,
min q , u , v J ( q , v ) subject to A i ( q ; [ u i , v i ] ) ( [ ζ i , ξ i ] ) = 0 , i = 1 , 2 , , W .
J ( q , v ) = i = 1 W 1 2 v i z i Γ 2 + β r ( q ) ,
A i ( q ; [ u i , v i ] ) ( [ ζ i , ξ i ] ) = ( D x u i , ζ i ) Ω + ( k x u i , ζ i ) Ω + γ 2 ( u i , ζ i ) Ω + 1 2 ( S i , ζ i ) Ω
+ ( D m v i , ξ i ) Ω + ( k m v i , ξ i ) Ω + γ 2 ( v i , ξ i ) Ω ( β xm u i , ξ i ) Ω .
L ( x ) = J ( q , v ) + i = 1 W A i ( q ; [ u i , v i ] ) ( [ λ i ex , λ i em ] ) .
L xx ( x k ) ( δ x k , y ) = L x ( x k ) ( y ) y ,
x k + 1 = x k + α k δ x k .
[ M 0 P T 0 R C T P C 0 ] [ δ p k δ q k δ d k ] = [ F 1 F 2 F 3 ] ,
{ R + i = 1 W C i T P i T M i P i 1 C i } δ q k = F 2 i = 1 W C i T P i T ( F 1 i M i P i 1 F 3 i ) ,
P i δ p k i = F 3 i i = 1 W C i δ q k ,
P i T δ d k i = F 1 i i = 1 W M i δ p k i .
S = R + i = 1 W C i T P i T M i P i 1 C i

Metrics