Abstract

A flat spectral response has long been a requirement in photonic networking. In order to find a low cost alternative compared to some other technologies, a novel method is demonstrated to achieve such a response in silicon-on-insulator arrayed waveguide gratings (AWG) through free carrier absorption, implemented by ion implantation of dopant species. The AWG is designed using 1.5µm Si-overlayer on an SOI wafer utilising rib waveguides with a width of 1.1µm and an etch-depth of 0.88µm to facilitate the singlemode, birefringence-free operation. It is also essential to achieve a uniform dopant concentration throughout the guiding region to avoid any phase errors resulting from the free carriers. This can be achieved using multiple ion implantation steps. Both n and p type dopants are investigated and results showed significant reduction of doping length is achieved by using n-type dopant as compared to a p-type dopants. The broadened passband is measured to be 0.5nm, a 5 times broadening from the Gaussian peak.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto and H. Yamada, "Arrayed-waveguide grating multiplexer with flat spectral response," Opt. Lett. 20, 43-45 (1995).
    [CrossRef] [PubMed]
  2. K. Okamoto and A. Sugita, "Flat spectral response arrayed-waveguide grating multiplexer with Parabolic waveguides horns," Electron. Lett. 32, 1661-1662 (1996).
    [CrossRef]
  3. M. R. Amersfoot, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996).
    [CrossRef]
  4. Y. P. Ho and Y. J. Chen, "Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-Circle Design," IEEE Photon. Technol. Lett. 9, 342-344 (1997).
    [CrossRef]
  5. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, V. M. N. Passaro, "Single mode and polarisation independent silicon-on-insulator waveguides with small cross section," J. Lightwave Technol. 23, 2103-2111 (2005).
    [CrossRef]
  6. BeamPROP, Rsoft, Inc. Research Software, Ossininh NY.
  7. Amersfoot, "http://www.c2v.nl/products/software/support/files/A1998003B.pdf"
  8. J. W. Goodman, Introduction to Fourier Optics in Classic Textbook Reissue Series. (New York: McGraw-Hill, 1998), Chap. 5, pp.83-90.
  9. P. Munoz, D. Pastor and J. Capmany, "Modeling and design of arrayed waveguide gratings," J. Lightwave Technol. 20, 661-674 (2002).
    [CrossRef]
  10. R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. QE-23, (1987).
  11. D. Plummer and P. B. Griffin, "Material and Process Limits in Silicon VLSI Technology," Proceedings of THE IEEE. 89, 240-258, (2001)
    [CrossRef]
  12. SILVACO International, 4701, Patrick Henry Drive, Blg 1, Santa Clara, California.

2005 (1)

2002 (1)

2001 (1)

D. Plummer and P. B. Griffin, "Material and Process Limits in Silicon VLSI Technology," Proceedings of THE IEEE. 89, 240-258, (2001)
[CrossRef]

1997 (1)

Y. P. Ho and Y. J. Chen, "Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-Circle Design," IEEE Photon. Technol. Lett. 9, 342-344 (1997).
[CrossRef]

1996 (2)

K. Okamoto and A. Sugita, "Flat spectral response arrayed-waveguide grating multiplexer with Parabolic waveguides horns," Electron. Lett. 32, 1661-1662 (1996).
[CrossRef]

M. R. Amersfoot, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996).
[CrossRef]

1995 (1)

1987 (1)

R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. QE-23, (1987).

Amersfoot, M. R.

M. R. Amersfoot, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996).
[CrossRef]

Andreadakis, N. C.

M. R. Amersfoot, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. QE-23, (1987).

Caneau, C.

M. R. Amersfoot, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996).
[CrossRef]

Capmany, J.

Chan, S. P.

Chen, Y. J.

Y. P. Ho and Y. J. Chen, "Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-Circle Design," IEEE Photon. Technol. Lett. 9, 342-344 (1997).
[CrossRef]

Griffin, P. B.

D. Plummer and P. B. Griffin, "Material and Process Limits in Silicon VLSI Technology," Proceedings of THE IEEE. 89, 240-258, (2001)
[CrossRef]

Ho, Y. P.

Y. P. Ho and Y. J. Chen, "Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-Circle Design," IEEE Photon. Technol. Lett. 9, 342-344 (1997).
[CrossRef]

LeBlanc, H. P.

M. R. Amersfoot, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996).
[CrossRef]

Lim, S. T.

Munoz, P.

Okamoto, K.

K. Okamoto and A. Sugita, "Flat spectral response arrayed-waveguide grating multiplexer with Parabolic waveguides horns," Electron. Lett. 32, 1661-1662 (1996).
[CrossRef]

K. Okamoto and H. Yamada, "Arrayed-waveguide grating multiplexer with flat spectral response," Opt. Lett. 20, 43-45 (1995).
[CrossRef] [PubMed]

Passaro, V. M. N.

Pastor, D.

Plummer, D.

D. Plummer and P. B. Griffin, "Material and Process Limits in Silicon VLSI Technology," Proceedings of THE IEEE. 89, 240-258, (2001)
[CrossRef]

Png, C. E.

Rajhel, A.

M. R. Amersfoot, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996).
[CrossRef]

Reed, G. T.

Soole, J. B. D.

M. R. Amersfoot, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996).
[CrossRef]

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. QE-23, (1987).

Sugita, A.

K. Okamoto and A. Sugita, "Flat spectral response arrayed-waveguide grating multiplexer with Parabolic waveguides horns," Electron. Lett. 32, 1661-1662 (1996).
[CrossRef]

Yamada, H.

Electron. Lett. (2)

K. Okamoto and A. Sugita, "Flat spectral response arrayed-waveguide grating multiplexer with Parabolic waveguides horns," Electron. Lett. 32, 1661-1662 (1996).
[CrossRef]

M. R. Amersfoot, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel and C. Caneau, "Passband broadening of integrated arrayed waveguide filters using multimode interference couplers," Electron. Lett. 32, 449-451 (1996).
[CrossRef]

IEEE J. Quantum Electron (1)

R. A. Soref and B. R. Bennett, "Electro optical effects in silicon," IEEE J. Quantum Electron. QE-23, (1987).

IEEE Photon. Technol. Lett. (1)

Y. P. Ho and Y. J. Chen, "Flat channel-passband-wavelength multiplexing and demultiplexing devices by multiple-Rowland-Circle Design," IEEE Photon. Technol. Lett. 9, 342-344 (1997).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (1)

Proceedings of THE IEEE. (1)

D. Plummer and P. B. Griffin, "Material and Process Limits in Silicon VLSI Technology," Proceedings of THE IEEE. 89, 240-258, (2001)
[CrossRef]

Other (4)

SILVACO International, 4701, Patrick Henry Drive, Blg 1, Santa Clara, California.

BeamPROP, Rsoft, Inc. Research Software, Ossininh NY.

Amersfoot, "http://www.c2v.nl/products/software/support/files/A1998003B.pdf"

J. W. Goodman, Introduction to Fourier Optics in Classic Textbook Reissue Series. (New York: McGraw-Hill, 1998), Chap. 5, pp.83-90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Field distribution and intensity difference plot between the Gaussian and sin(x)/x function Since the phase of the optical field in the AWs is dependent upon the refractive index of the material, one would expect a phase change resulting from the doping concentration. These phase changes are evaluated approximately from:

Fig 2.
Fig 2.

Variation in (a) electrons and (b) holes net concentration with different absorption factors to evaluated the intended doping length.

Fig 3.
Fig 3.

Left: Phase change induced by changing of refractive index due to (a) electrons net concentration and (b) holes net concentration; Right: Compensation length required to maintain constructive interference at the output of the AWG.

Fig. 4.
Fig. 4.

Doping length evaluated across the grating arms based on 1e20 cm-3 n-type dopant.

Fig. 5.
Fig. 5.

Evaluating the phase condition and compensation length based on the resultant doping length.

Fig. 6.
Fig. 6.

Implantation profilea: gray kines indicated implanted profiles of respective energy and fluence and black line indicates post anneal profile

Fig. 7.
Fig. 7.

The experimental setup to measure the AWG; detection of light from output waveguides through lensed fiber with spot size of 2.5µm.

Fig. 8.
Fig. 8.

(a). Measured response of a flat-top SOI AWG. Peak at 1549.3nm with broadening factor of 0.5nm. (b). Measured response of a flat-top SOI AWG. Peaks at 1549.3nm and 1550.8nm with broadening factor of 0.5nm and channel spacing of 1.6nm

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( x i ) = 2 π w i 2 σ 2 4 e ( π w i ( x i σ ) ) 2
g ( p ) = 1 M p = 0 M 1 { E ( q Δ λ ) exp [ j β aw ( q ) L c ] } exp ( j 2 π q p M )
Δ n = Δ n e + Δ n h
= [ 8.8 × 10 22 Δ N e + 8.5 × 10 18 ( Δ N h ) 0.8 ]
Δ α = Δ α e + Δ α h
= 8.5 × 10 18 Δ N e + 6.0 × 10 18 Δ N h
L doping = Intenisty Difference ( dB ) 10 log ( e Δ α )
Δ ϕ = 2 π Δ n L doping λ
L doping = Δ ϕλ 2 π n aw

Metrics