Abstract

We study supercontinuum (SC) generation in sapphire pumped by two femtosecond lasers with dual wavelengths of 800 nm and 1054 nm. In comparison with the case pumped by single-wavelength pulses, the conversion efficiencies in the visible and infrared regions are enhanced by almost an order of magnitude, and the SC spectrum can be much flatter with dual-wavelength pulses pumping. The ultrabroad SC spanning from 350 nm to 1600 nm is obtained experimentally, which covers an octave of the pumping wavelengths.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. T. Rakich, H. Sotobayashi, J. T. Gopinath, S. G. Johnson, J. W. Sickler, C. W. Wong, J. D. Joannopoulos, E. P. Ippen, “Nano-scale photonic crystal microcavity characterization with an all-fiber based 1.2–2.0 µm supercontinuum,” Opt. Express 13, 821–825 (2005).
    [CrossRef] [PubMed]
  2. M. Lehtonen, G. Genty, H. Ludvigsen, “Absorption and transmission spectral measurements of fiberoptic components using supercontinuum radiation,” Appl. Phys. B 81, 231–234 (2005).
    [CrossRef]
  3. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  4. A. Baltuška, T. Fuji, T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002).
    [CrossRef]
  5. V. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002).
    [PubMed]
  6. A. Saliminia, S. Chin, R. Vallée, “Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 um,” Opt. Express 13, 5731–5738 (2005).
    [CrossRef] [PubMed]
  7. A. Dharmadhikari, F. Rajgara, N. C. Reddy, A. Sandhu, D. Mathur, “Highly efficient white light generation from barium fluoride,” Opt. Express 12, 695–700 (2004).
    [CrossRef] [PubMed]
  8. A. Dharmadhikari, F. Rajgara, D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
    [CrossRef]
  9. A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  10. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
    [CrossRef] [PubMed]
  11. G. Genty, M. Lehtonen, H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30, 756–758 (2005).
    [CrossRef] [PubMed]
  12. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005).
    [CrossRef] [PubMed]
  13. G. Yang, Y. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett. 9, 510–512 (1984).
    [CrossRef] [PubMed]
  14. H. Luo, L. Qian, P. Yuan, H. Zhu, S. Wen, “Hybrid seeded femtosecond optical parametric amplifier,” Opt. Express 13, 9747–9752 (2005).
    [CrossRef] [PubMed]
  15. M. Reed, M. Steinershepard, D. Negus, “Tunable ultraviolet generation using a femtosecond 250 kHz Ti : sapphire regenerative amplifier,” IEEE J. Quantum Electron. 31, 1614–1618 (1995).
    [CrossRef]

2005 (7)

P. T. Rakich, H. Sotobayashi, J. T. Gopinath, S. G. Johnson, J. W. Sickler, C. W. Wong, J. D. Joannopoulos, E. P. Ippen, “Nano-scale photonic crystal microcavity characterization with an all-fiber based 1.2–2.0 µm supercontinuum,” Opt. Express 13, 821–825 (2005).
[CrossRef] [PubMed]

M. Lehtonen, G. Genty, H. Ludvigsen, “Absorption and transmission spectral measurements of fiberoptic components using supercontinuum radiation,” Appl. Phys. B 81, 231–234 (2005).
[CrossRef]

A. Saliminia, S. Chin, R. Vallée, “Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 um,” Opt. Express 13, 5731–5738 (2005).
[CrossRef] [PubMed]

A. Dharmadhikari, F. Rajgara, D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30, 756–758 (2005).
[CrossRef] [PubMed]

T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005).
[CrossRef] [PubMed]

H. Luo, L. Qian, P. Yuan, H. Zhu, S. Wen, “Hybrid seeded femtosecond optical parametric amplifier,” Opt. Express 13, 9747–9752 (2005).
[CrossRef] [PubMed]

2004 (2)

2002 (2)

2001 (2)

1995 (1)

M. Reed, M. Steinershepard, D. Negus, “Tunable ultraviolet generation using a femtosecond 250 kHz Ti : sapphire regenerative amplifier,” IEEE J. Quantum Electron. 31, 1614–1618 (1995).
[CrossRef]

1984 (1)

Andersen, T.

Baltuška, A.

Champert, P. A.

Chin, S.

Chudoba, C.

Couderc, V.

Dharmadhikari, A.

A. Dharmadhikari, F. Rajgara, D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

A. Dharmadhikari, F. Rajgara, N. C. Reddy, A. Sandhu, D. Mathur, “Highly efficient white light generation from barium fluoride,” Opt. Express 12, 695–700 (2004).
[CrossRef] [PubMed]

Février, S.

Froehly, C.

Fuji, T.

Fujimoto, J. G.

Genty, G.

M. Lehtonen, G. Genty, H. Ludvigsen, “Absorption and transmission spectral measurements of fiberoptic components using supercontinuum radiation,” Appl. Phys. B 81, 231–234 (2005).
[CrossRef]

G. Genty, M. Lehtonen, H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30, 756–758 (2005).
[CrossRef] [PubMed]

George, A.

Ghanta, R. K.

Gopinath, J. T.

Hartl, I.

Herrmann, J.

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Husakou, A. V.

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Ippen, E. P.

Joannopoulos, J. D.

Johnson, S. G.

Knight, J.

Ko, T. H.

Kobayashi, T.

Kumar, V.

Labonté, L.

Lehtonen, M.

G. Genty, M. Lehtonen, H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30, 756–758 (2005).
[CrossRef] [PubMed]

M. Lehtonen, G. Genty, H. Ludvigsen, “Absorption and transmission spectral measurements of fiberoptic components using supercontinuum radiation,” Appl. Phys. B 81, 231–234 (2005).
[CrossRef]

Leproux, P.

Li, X. D.

Limpert, J.

Ludvigsen, H.

G. Genty, M. Lehtonen, H. Ludvigsen, “Route to broadband blue-light generation in microstructured fibers,” Opt. Lett. 30, 756–758 (2005).
[CrossRef] [PubMed]

M. Lehtonen, G. Genty, H. Ludvigsen, “Absorption and transmission spectral measurements of fiberoptic components using supercontinuum radiation,” Appl. Phys. B 81, 231–234 (2005).
[CrossRef]

Luo, H.

Mathur, D.

A. Dharmadhikari, F. Rajgara, D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

A. Dharmadhikari, F. Rajgara, N. C. Reddy, A. Sandhu, D. Mathur, “Highly efficient white light generation from barium fluoride,” Opt. Express 12, 695–700 (2004).
[CrossRef] [PubMed]

Negus, D.

M. Reed, M. Steinershepard, D. Negus, “Tunable ultraviolet generation using a femtosecond 250 kHz Ti : sapphire regenerative amplifier,” IEEE J. Quantum Electron. 31, 1614–1618 (1995).
[CrossRef]

Nérin, P.

Omenetto, F.

Qian, L.

Rajgara, F.

A. Dharmadhikari, F. Rajgara, D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

A. Dharmadhikari, F. Rajgara, N. C. Reddy, A. Sandhu, D. Mathur, “Highly efficient white light generation from barium fluoride,” Opt. Express 12, 695–700 (2004).
[CrossRef] [PubMed]

Rakich, P. T.

Ranka, J. K.

Reddy, N. C.

Reed, M.

M. Reed, M. Steinershepard, D. Negus, “Tunable ultraviolet generation using a femtosecond 250 kHz Ti : sapphire regenerative amplifier,” IEEE J. Quantum Electron. 31, 1614–1618 (1995).
[CrossRef]

Reeves, W.

Roy, P.

Russell, P.

Saliminia, A.

Sandhu, A.

Schimpf, D.

Schreiber, T.

Shen, Y.

Sickler, J. W.

Sotobayashi, H.

Steinershepard, M.

M. Reed, M. Steinershepard, D. Negus, “Tunable ultraviolet generation using a femtosecond 250 kHz Ti : sapphire regenerative amplifier,” IEEE J. Quantum Electron. 31, 1614–1618 (1995).
[CrossRef]

Taylor, A.

Tombelaine, V.

Tünnermann, A.

Vallée, R.

Wen, S.

Windeler, R. S.

Wong, C. W.

Yang, G.

Yuan, P.

Zhu, H.

Appl. Phys. B (2)

M. Lehtonen, G. Genty, H. Ludvigsen, “Absorption and transmission spectral measurements of fiberoptic components using supercontinuum radiation,” Appl. Phys. B 81, 231–234 (2005).
[CrossRef]

A. Dharmadhikari, F. Rajgara, D. Mathur, “Systematic study of highly efficient white light generation in transparent materials using intense femtosecond laser pulses,” Appl. Phys. B 80, 61–66 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Reed, M. Steinershepard, D. Negus, “Tunable ultraviolet generation using a femtosecond 250 kHz Ti : sapphire regenerative amplifier,” IEEE J. Quantum Electron. 31, 1614–1618 (1995).
[CrossRef]

Opt. Express (7)

T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005).
[CrossRef] [PubMed]

P. T. Rakich, H. Sotobayashi, J. T. Gopinath, S. G. Johnson, J. W. Sickler, C. W. Wong, J. D. Joannopoulos, E. P. Ippen, “Nano-scale photonic crystal microcavity characterization with an all-fiber based 1.2–2.0 µm supercontinuum,” Opt. Express 13, 821–825 (2005).
[CrossRef] [PubMed]

H. Luo, L. Qian, P. Yuan, H. Zhu, S. Wen, “Hybrid seeded femtosecond optical parametric amplifier,” Opt. Express 13, 9747–9752 (2005).
[CrossRef] [PubMed]

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, P. Nérin, “White-light supercontinuum generation in normally dispersive optical fiber using original multiwavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

V. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, A. Taylor, “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Opt. Express 10, 1520–1525 (2002).
[PubMed]

A. Saliminia, S. Chin, R. Vallée, “Ultra-broad and coherent white light generation in silica glass by focused femtosecond pulses at 1.5 um,” Opt. Express 13, 5731–5738 (2005).
[CrossRef] [PubMed]

A. Dharmadhikari, F. Rajgara, N. C. Reddy, A. Sandhu, D. Mathur, “Highly efficient white light generation from barium fluoride,” Opt. Express 12, 695–700 (2004).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Measured spectra of SC and the corresponding pump pulse (inset). (a) The pump laser at 800 nm, and (b) the pump laser at 1054 nm.

Fig. 2.
Fig. 2.

The measured SC spectra with dual-wavelength pumping for different pump conditions: The two pump pulses are completely separated, and the pump pulse energy at 800 nm is 8 µJ in this case (black line); the two pump pulses are temporally overlapped and the pump pulse energy at 800 nm is 3 µJ (green line) or 8 µJ (red line). Pump pulse energy at 1054 nm is fixed at 22 µJ. All the spectra are normalized to the maximum peak of the SC spectrum generated by the two temporally separated pulses.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

[ z + n 0 c ( 1 + n 2 n 0 ε m 2 t ) ] ε m = i n 2 ω m c ( ε m 2 ε m + 2 ε 1 m 2 ε m )
[ z + n 0 c ( 1 + n 2 n 0 ε m 2 t ) ] ε m = 0
[ z + n 0 c ( 1 + n 2 n 0 ε m t ) ] ϕ m = n 2 ω m c ( ε m 2 + 2 ε 1 m 2 )
Δ ω + = ω 0 { [ ( Q 0 2 + 4 ) 1 2 + Q 0 ] 2 1 }
Δ ω = ω 1 { [ ( Q 1 2 + 4 ) 1 2 + Q 1 ] 2 1 }
Δ ω + = ω { [ ( Q 2 + 4 ) 1 2 + Q ] 2 1 }
Δ ω = ω { [ ( Q 2 + 4 ) 1 2 Q ] 2 1 }
ω = ( ω 0 + ω 1 ) 2
Q = [ ( Q 0 2 + 4 ) 1 2 ( ω 0 + ω 1 ) ( ω 0 ω 1 ) + Q 0 ( ω 0 2 + ω 1 2 ) ] ( 2 ω 0 ω 1 )

Metrics