Abstract

We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a “clocked” traffic of micro beads, and size-selective guiding of beads along optical “conveyor belts”.

© 2006 Optical Society of America

PDF Article
OSA Recommended Articles
Size selective trapping with optical “cogwheel” tweezers

Alexander Jesacher, Severin Fürhapter, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 12(17) 4129-4135 (2004)

Diffractive optical tweezers in the Fresnel regime

Alexander Jesacher, Severin Fürhapter, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 12(10) 2243-2250 (2004)

Optical micromanipulation using supercontinuum Laguerre-Gaussian and Gaussian beams

J. E. Morris, A. E. Carruthers, M. Mazilu, P. J. Reece, T. Cizmar, P. Fischer, and K. Dholakia
Opt. Express 16(14) 10117-10129 (2008)

References

  • View by:
  • |
  • |
  • |

  1. E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instr. 69, 1974–1977 (1998).
    [Crossref]
  2. M. J. Lang and S.M. Block, “Resource Letter: LBOT-1: Laser based optical tweezers,” Am. J. Phys. 71, 201–215 (2003).
    [PubMed]
  3. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
    [Crossref]
  4. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597–602 (2002).
    [PubMed]
  5. W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,” Opt. Express 11, 2053–2059 (2003).
    [Crossref] [PubMed]
  6. P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
    [Crossref] [PubMed]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
    [Crossref] [PubMed]
  8. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size-selective trapping with optical cogwheel tweezers,” Opt. Express 12, 4129–4135 (2004).
    [Crossref] [PubMed]
  9. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  10. K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
    [Crossref] [PubMed]
  11. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
    [Crossref] [PubMed]
  12. V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticles on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
    [Crossref]
  13. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562–3567 (2003).
    [Crossref] [PubMed]
  14. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express 12, 220–226 (2004).
    [Crossref] [PubMed]
  15. C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, “Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology,” Biophys J. 2005 89, 1353–1361 (2005).
    [Crossref]
  16. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004).
    [Crossref] [PubMed]
  17. M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
    [Crossref] [PubMed]
  18. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
    [Crossref]
  19. K. Ladavac and D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70, 548–552 (2005).
    [Crossref]
  20. K. Ladavac and D. G. Grier, “Statistically Locked-in Transport Through Periodic Potential Landscapes,” Phys. Rev. Lett. 92, 130602(2004).
    [Crossref]
  21. M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233 (1989).
    [Crossref] [PubMed]
  22. D. McGloin, A. E. Carruthers, K. Dholakia, and E. M. Wright, “Optically bound microscopic particles in one dimension,” Phys. Rev. E 69, 021403 (2004).
    [Crossref]
  23. W. Singer, M. Frick, S. Bernet, and M. Ritsch-Marte, “Self-organized array of regularly spaced microbeads in a fiber-optical trap,” J. Opt. Soc. Am. B 20, 1568 (2003).
    [Crossref]

2005 (4)

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticles on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

K. Ladavac and D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70, 548–552 (2005).
[Crossref]

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, “Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology,” Biophys J. 2005 89, 1353–1361 (2005).
[Crossref]

M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
[Crossref] [PubMed]

2004 (6)

2003 (6)

2002 (2)

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[Crossref] [PubMed]

R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597–602 (2002).
[PubMed]

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

2000 (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

1998 (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instr. 69, 1974–1977 (1998).
[Crossref]

1989 (1)

M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233 (1989).
[Crossref] [PubMed]

Bernet, S.

Bertocchi, C.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, “Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology,” Biophys J. 2005 89, 1353–1361 (2005).
[Crossref]

Birch, M.

Block, S.M.

M. J. Lang and S.M. Block, “Resource Letter: LBOT-1: Laser based optical tweezers,” Am. J. Phys. 71, 201–215 (2003).
[PubMed]

Burns, M.M.

M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233 (1989).
[Crossref] [PubMed]

Carruthers, A. E.

D. McGloin, A. E. Carruthers, K. Dholakia, and E. M. Wright, “Optically bound microscopic particles in one dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

Cooper, J.

Courtial, J.

Crain, J.

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[Crossref] [PubMed]

Daria, V. R.

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Dholakia, K.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticles on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

D. McGloin, A. E. Carruthers, K. Dholakia, and E. M. Wright, “Optically bound microscopic particles in one dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562–3567 (2003).
[Crossref] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref] [PubMed]

Dietl, P.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, “Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology,” Biophys J. 2005 89, 1353–1361 (2005).
[Crossref]

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instr. 69, 1974–1977 (1998).
[Crossref]

Eriksen, R. L.

Fournier, J.-M.

M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233 (1989).
[Crossref] [PubMed]

Frick, M.

Fürhapter, S.

Garcés-Chávez, V.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticles on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

Glückstad, J.

Golovchenko, J.A.

M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233 (1989).
[Crossref] [PubMed]

Grier, D.

Grier, D. G.

K. Ladavac and D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70, 548–552 (2005).
[Crossref]

K. Ladavac and D. G. Grier, “Statistically Locked-in Transport Through Periodic Potential Landscapes,” Phys. Rev. Lett. 92, 130602(2004).
[Crossref]

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[Crossref] [PubMed]

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[Crossref] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instr. 69, 1974–1977 (1998).
[Crossref]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Haller, T.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, “Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology,” Biophys J. 2005 89, 1353–1361 (2005).
[Crossref]

Heggarty, K.

Hossack, W. J.

Jesacher, A.

Jordan, P.

Korda, P. T.

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[Crossref] [PubMed]

Laczik, Z. J.

Ladavac, K.

K. Ladavac and D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70, 548–552 (2005).
[Crossref]

M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
[Crossref] [PubMed]

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[Crossref] [PubMed]

K. Ladavac and D. G. Grier, “Statistically Locked-in Transport Through Periodic Potential Landscapes,” Phys. Rev. Lett. 92, 130602(2004).
[Crossref]

Lang, M. J.

M. J. Lang and S.M. Block, “Resource Letter: LBOT-1: Laser based optical tweezers,” Am. J. Phys. 71, 201–215 (2003).
[PubMed]

Leach, J.

Lee, S. -H.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

MacDonald, M. P.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref] [PubMed]

McGloin, D.

D. McGloin, A. E. Carruthers, K. Dholakia, and E. M. Wright, “Optically bound microscopic particles in one dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562–3567 (2003).
[Crossref] [PubMed]

Melville, H.

Milne, G. F.

Padgett, M. J.

Polin, M.

Putz, G.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, “Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology,” Biophys J. 2005 89, 1353–1361 (2005).
[Crossref]

Ravasio, A.

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, “Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology,” Biophys J. 2005 89, 1353–1361 (2005).
[Crossref]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Ritsch-Marte, M.

Roichman, Y.

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Sibbett, W.

Sinclair, G.

Singer, W.

Spalding, G. C.

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticles on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref] [PubMed]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562–3567 (2003).
[Crossref] [PubMed]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Taylor, M. B.

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[Crossref] [PubMed]

Theofanidou, E.

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Wright, E. M.

D. McGloin, A. E. Carruthers, K. Dholakia, and E. M. Wright, “Optically bound microscopic particles in one dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

Am. J. Phys. (1)

M. J. Lang and S.M. Block, “Resource Letter: LBOT-1: Laser based optical tweezers,” Am. J. Phys. 71, 201–215 (2003).
[PubMed]

Appl. Phys. Lett. (1)

V. Garcés-Chávez, K. Dholakia, and G. C. Spalding, “Extended-area optically induced organization of microparticles on a surface,” Appl. Phys. Lett. 86, 031106 (2005).
[Crossref]

Biophys J. 2005 (1)

C. Bertocchi, A. Ravasio, S. Bernet, G. Putz, P. Dietl, and T. Haller, “Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology,” Biophys J. 2005 89, 1353–1361 (2005).
[Crossref]

Europhys. Lett. (1)

K. Ladavac and D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70, 548–552 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (2)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000).
[Crossref]

Opt. Express (8)

W. J. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, “High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay,” Opt. Express 11, 2053–2059 (2003).
[Crossref] [PubMed]

H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562–3567 (2003).
[Crossref] [PubMed]

J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express 12, 220–226 (2004).
[Crossref] [PubMed]

K. Ladavac and D. G. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004).
[Crossref] [PubMed]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Diffractive optical tweezers in the Fresnel regime,” Opt. Express 12, 2243–2250 (2004).
[Crossref] [PubMed]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Size-selective trapping with optical cogwheel tweezers,” Opt. Express 12, 4129–4135 (2004).
[Crossref] [PubMed]

M. Polin, K. Ladavac, S. -H. Lee, Y. Roichman, and D. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
[Crossref] [PubMed]

R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10, 597–602 (2002).
[PubMed]

Phys. Rev. E (1)

D. McGloin, A. E. Carruthers, K. Dholakia, and E. M. Wright, “Optically bound microscopic particles in one dimension,” Phys. Rev. E 69, 021403 (2004).
[Crossref]

Phys. Rev. Lett. (4)

P. T. Korda, M. B. Taylor, and D. G. Grier, “Kinetically locked-in colloidal transport in an array of optical tweezers,” Phys. Rev. Lett. 89, 128301 (2002).
[Crossref] [PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003).
[Crossref] [PubMed]

K. Ladavac and D. G. Grier, “Statistically Locked-in Transport Through Periodic Potential Landscapes,” Phys. Rev. Lett. 92, 130602(2004).
[Crossref]

M.M. Burns, J.-M. Fournier, and J.A. Golovchenko, “Optical binding,” Phys. Rev. Lett. 63, 1233 (1989).
[Crossref] [PubMed]

Rev. Sci. Instr. (1)

E. R. Dufresne and D. G. Grier, “Optical tweezer arrays and optical substrates created with diffractive optical elements,” Rev. Sci. Instr. 69, 1974–1977 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[Crossref]

Supplementary Material (7)

» Media 1: AVI (2401 KB)     
» Media 2: AVI (1480 KB)     
» Media 3: AVI (1236 KB)     
» Media 4: AVI (2511 KB)     
» Media 5: AVI (1280 KB)     
» Media 6: AVI (1911 KB)     
» Media 7: AVI (2097 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics