Abstract

We demonstrate room temperature continuous-wave laser operation at 1.3 µm in a photonic crystal nanocavity with InAs/GaAs self-assembled quantum dots by optical pumping. By analyzing a coupled rate equation and the experimental light-light characteristic plot, we evaluate the spontaneous emission coupling factor of the laser to be ~0.22. Three-dimensional carrier confinement and a low transparent carrier density due to volume effect in a quantum dot system play important roles in the cw laser operation at room temperature as well as a high quality factor photonic crystal nanocavity.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. H. Altug and J. Vuèkoviæ, "Photonic crystal nanocavity array laser," Opt. Express 13,8819-8828 (2005).
    [CrossRef] [PubMed]
  3. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401-1-117401-4 (2006).
    [CrossRef]
  4. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
    [CrossRef] [PubMed]
  5. S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407,608-610 (2000).
    [CrossRef] [PubMed]
  6. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
    [CrossRef] [PubMed]
  7. T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
    [CrossRef]
  8. S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E.L. Hu, P.M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-127404-4 (2006).
    [CrossRef]
  9. K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999).
    [CrossRef]
  10. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
    [CrossRef] [PubMed]
  11. G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
    [CrossRef]
  12. G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 35,2386-2396 (1991).
    [CrossRef]
  13. R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993).
    [CrossRef]
  14. L.Z. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82,319-321 (2003).
    [CrossRef]
  15. H.Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
    [CrossRef]
  16. A. Sakamoto and M. Sugawara, "Theoretical calculation of lasing spectra of quantum-dot lasers: Effect on homogeneous broadening of optical gain," IEEE Photon. Technol. Lett. 12, 107-109 (2000).
    [CrossRef]
  17. M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 041308-1-041308-4 (2002).
  18. H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001).
    [CrossRef]
  19. D. D. Nolte, "Surface recombination, free-carrier saturation, and dangling bonds in InP and GaAs," Sol.-Stat. Electron. 33, 295-298 (1990).
    [CrossRef]
  20. K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005).
    [CrossRef]
  21. J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
    [CrossRef]
  22. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
    [CrossRef]
  23. M. Nomura, S. Iwamoto, T. Nakaoka, S. Ishida, and Y. Arakawa, "Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity," Appl. Phys. Lett. 88, 141108-1-141108-3 (2006).
    [CrossRef]

2005 (2)

H. Altug and J. Vuèkoviæ, "Photonic crystal nanocavity array laser," Opt. Express 13,8819-8828 (2005).
[CrossRef] [PubMed]

K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005).
[CrossRef]

2004 (2)

H.Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

2003 (2)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

L.Z. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82,319-321 (2003).
[CrossRef]

2002 (1)

T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

2001 (2)

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001).
[CrossRef]

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

2000 (3)

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

A. Sakamoto and M. Sugawara, "Theoretical calculation of lasing spectra of quantum-dot lasers: Effect on homogeneous broadening of optical gain," IEEE Photon. Technol. Lett. 12, 107-109 (2000).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407,608-610 (2000).
[CrossRef] [PubMed]

1999 (2)

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999).
[CrossRef]

1993 (1)

R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993).
[CrossRef]

1992 (1)

G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

1991 (1)

G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 35,2386-2396 (1991).
[CrossRef]

1990 (1)

D. D. Nolte, "Surface recombination, free-carrier saturation, and dangling bonds in InP and GaAs," Sol.-Stat. Electron. 33, 295-298 (1990).
[CrossRef]

1987 (1)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

Altug, H.

Asano, T.

K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

Aspar, B.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Björk, G.

G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 35,2386-2396 (1991).
[CrossRef]

Chen, H.

T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407,608-610 (2000).
[CrossRef] [PubMed]

Dapkus, P. D.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Deppe, D.G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

Fujita, M.

K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005).
[CrossRef]

Gendry, M.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Gibbs, H.M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

Han, I.-Y.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

Hollinger, G.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Hu, E.

L.Z. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82,319-321 (2003).
[CrossRef]

Hwang, J.-K.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407,608-610 (2000).
[CrossRef] [PubMed]

Ishikawa, H.

K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999).
[CrossRef]

Jalaguier, E.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

Kounoike, K.

K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005).
[CrossRef]

Kuramoti, E.

H.Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

Lee, R.K.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y.-H.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Letartre, X.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Levi, A.F.J.

R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993).
[CrossRef]

Logan, R.A.

R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993).
[CrossRef]

McCall, S.L.

R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993).
[CrossRef]

Mohideen, U.

R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993).
[CrossRef]

Monat, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Mukai, K.

K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999).
[CrossRef]

Nakanishi, J.

K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005).
[CrossRef]

Nakata, Y.

K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999).
[CrossRef]

Noda, S.

K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407,608-610 (2000).
[CrossRef] [PubMed]

Nolte, D. D.

D. D. Nolte, "Surface recombination, free-carrier saturation, and dangling bonds in InP and GaAs," Sol.-Stat. Electron. 33, 295-298 (1990).
[CrossRef]

Notomi, M.

H.Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

O’Brien, J.D.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Ohtsubo, K.

K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999).
[CrossRef]

Painter, O.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Park, H.-K.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Pearton, S.J.

R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993).
[CrossRef]

Pocas, S.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Regreny, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Rojo-Romeo, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

Ryu, H.Y.

H.Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

Ryu, H.-Y.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Sakamoto, A.

A. Sakamoto and M. Sugawara, "Theoretical calculation of lasing spectra of quantum-dot lasers: Effect on homogeneous broadening of optical gain," IEEE Photon. Technol. Lett. 12, 107-109 (2000).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Seassal, C.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Segawa, T.

H.Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

Shchekin, O.B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

Slusher, R.E.

R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993).
[CrossRef]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

Song, D.-S.

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Song, H.-W.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Sugawara, M.

A. Sakamoto and M. Sugawara, "Theoretical calculation of lasing spectra of quantum-dot lasers: Effect on homogeneous broadening of optical gain," IEEE Photon. Technol. Lett. 12, 107-109 (2000).
[CrossRef]

K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999).
[CrossRef]

Viktorovitch, P.

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

Vuèkoviæ, J.

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yamaguchi, M.

K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005).
[CrossRef]

Yamamoto, Y.

G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 35,2386-2396 (1991).
[CrossRef]

Yariv, A.

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Yokoyama, N.

K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

Zhang, L.Z.

L.Z. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82,319-321 (2003).
[CrossRef]

Appl. Phys. Lett. (6)

R.E. Slusher, A.F.J. Levi, U. Mohideen, S.L. McCall, S.J. Pearton, and R.A. Logan, "Threshold characteristics of semiconductor microdisk lasers," Appl. Phys. Lett. 63,1310-1312 (1993).
[CrossRef]

L.Z. Zhang and E. Hu, "Lasing from InGaAs quantum dots in an injection microdisk," Appl. Phys. Lett. 82,319-321 (2003).
[CrossRef]

H.Y. Ryu, M. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067-1069 (2004).
[CrossRef]

G. Björk and Y. Yamamoto, "On the linewidth of microcavity lasers," Appl. Phys. Lett. 60, 304-306 (1992).
[CrossRef]

H.-Y. Ryu, J.-K. Hwang, D.-S. Song, I.-Y. Han, and Y.-H. Lee, "Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures," Appl. Phys. Lett. 78, 1174-1176 (2001).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 μm," Appl. Phys. Lett. 76, 2982-2984 (2000).
[CrossRef]

Electron. Lett. (3)

C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, and B. Aspar, "InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm," Electron. Lett. 37, 764-766 (2001).
[CrossRef]

K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakanishi, and S. Noda, "Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab," Electron. Lett. 41, 1402-1403 (2005).
[CrossRef]

T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal lasers," Electron. Lett. 38,967-968 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Björk and Y. Yamamoto, "Analysis of semiconductor microcavity lasers using rate equations," IEEE J. Quantum Electron. 35,2386-2396 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Sakamoto and M. Sugawara, "Theoretical calculation of lasing spectra of quantum-dot lasers: Effect on homogeneous broadening of optical gain," IEEE Photon. Technol. Lett. 12, 107-109 (2000).
[CrossRef]

K. Mukai, Y. Nakata, K. Ohtsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, "1.3-μm CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA," IEEE Photon. Technol. Lett. 11, 1205-1207 (1999).
[CrossRef]

Nature (3)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, and D.G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432,200-203 (2004).
[CrossRef] [PubMed]

S. Noda, A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature 407,608-610 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Science (1)

O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, and P. D. Dapkus, "Two-dimensional photonic band-gap defect mode laser," Science 284,1819-1821 (1999).
[CrossRef] [PubMed]

Stat. Electron. (1)

D. D. Nolte, "Surface recombination, free-carrier saturation, and dangling bonds in InP and GaAs," Sol.-Stat. Electron. 33, 295-298 (1990).
[CrossRef]

Other (4)

M. Bayer and A. Forchel, "Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots," Phys. Rev. B 65, 041308-1-041308-4 (2002).

W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401-1-117401-4 (2006).
[CrossRef]

S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E.L. Hu, P.M. Petroff, and D. Bouwmeester, "Self-tuned quantum dot gain in photonic crystal lasers," Phys. Rev. Lett. 96, 127404-1-127404-4 (2006).
[CrossRef]

M. Nomura, S. Iwamoto, T. Nakaoka, S. Ishida, and Y. Arakawa, "Localized excitation of InGaAs quantum dots by utilizing a photonic crystal nanocavity," Appl. Phys. Lett. 88, 141108-1-141108-3 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Scanning electron micrograph of a cross section of a two-dimensional PhC structure. (b) Top view of the L3 defect nanocavity. The first and third nearest air holes at both ends of the cavity are shifted outwards by 0.15a as shown by white arrows.

Fig. 2.
Fig. 2.

Lasing spectrum with cw excitation light with an excitation power of 40 µW measured at room temperature.

Fig. 3.
Fig. 3.

Output power of the lasing mode as a function of excitation power. The lateral axis is average excitation power (10% duty cycle, 100 µs quasi cw excitation). Red line is the linear fit for the experimental plot above the threshold.

Fig. 4.
Fig. 4.

PL spectra around the cavity mode measured at various excitation powers. The figures in the inset are the average excitation powers (10% duty cycle, 100 µs quasi cw excitation) in units of µW. The vertical axis is on a logarithmic scale.

Fig. 5.
Fig. 5.

(a) Linewidth of the lasing mode. The broken green line: resolution limit of the detection system. (b) Output power of the lasing mode. The lateral axis is the average excitation power (10% duty cycle, 100 µs quasi cw excitation). The green curve is the fitting curve by a coupled rate equation analysis.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d N d t = R ex N τ r N τ nr c n eff . Γ g ( N ) P ,
d P d t = c n eff . Γ g ( N ) P + β N τ r P τ p .

Metrics