Abstract

We demonstrate a tunable Šolc-type filter in periodically poled lithium niobate by UV-light illumination in this paper. Due to the photovoltaic effect, a Šolc-type filter in PPLN can be formed without applying an external electric field. Through this mechanism, a tunable wavelength filter by UV-light illumination is realized. A wavelength shift as large as 15nm is observed under 778mW/cm2 uniform UV illumination. The dependence of wavelength shift on illumination intensity shows a nearly linear relationship and the tuning rate is about 52 mW/cm2 per nm at 20°C.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Šolc,"Birefringent chain filters," J. Opt. Soc. Am. 55, 621-625 (1965).
    [CrossRef]
  2. A. Yariv and P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (John Wiley & Sons, New York, 1984).
  3. D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
    [CrossRef]
  4. J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Observation of Šolc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
    [CrossRef]
  5. X.F. Chen, J.H. Shi, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
    [CrossRef] [PubMed]
  6. Y. M. Zhu, X. F. Chen, J. H. Shi, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
    [CrossRef]
  7. Lijun Chen, Jianhong Shi, Xianfeng Chen, Yuxing xia, "Photovoltaic effect in a periodically poled lithium niobate Šolc-type wavelength filter," Appl. Phys. Lett. 88, 121118 (2006).
    [CrossRef]
  8. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
    [CrossRef]
  9. Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. Y. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822-1824 (1999).
    [CrossRef] [PubMed]
  10. L. Arizmendi, "photonic applications of lithium niobate crystals," Phys. Stat. Sol. 201, 253-283 (2004).
    [CrossRef]
  11. B. I. Sturman, V. M. Fridkin, The photovoltaic and photorefractive effects in noncentrosymmetric materials (Gordo and Breach Science Publishers, 1992).
  12. E. Kratzig and H. Kurz, "photo-induced currents and voltages in LiNbO3," Ferroelectrics 13, 295-296 (1976).
    [CrossRef]
  13. M. Glass, D. von der Linde, T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
    [CrossRef]
  14. M. Simon, St. Wevering, K. Buse and E. Kratzig, "The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities," J. Phys. D: Appl. Phys. 30, 144-149 (1997).
    [CrossRef]

2006 (1)

Lijun Chen, Jianhong Shi, Xianfeng Chen, Yuxing xia, "Photovoltaic effect in a periodically poled lithium niobate Šolc-type wavelength filter," Appl. Phys. Lett. 88, 121118 (2006).
[CrossRef]

2004 (1)

L. Arizmendi, "photonic applications of lithium niobate crystals," Phys. Stat. Sol. 201, 253-283 (2004).
[CrossRef]

2003 (3)

J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Observation of Šolc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

X.F. Chen, J.H. Shi, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Y. M. Zhu, X. F. Chen, J. H. Shi, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

2000 (1)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

1999 (1)

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. Y. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822-1824 (1999).
[CrossRef] [PubMed]

1997 (1)

M. Simon, St. Wevering, K. Buse and E. Kratzig, "The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities," J. Phys. D: Appl. Phys. 30, 144-149 (1997).
[CrossRef]

1979 (1)

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
[CrossRef]

1976 (1)

E. Kratzig and H. Kurz, "photo-induced currents and voltages in LiNbO3," Ferroelectrics 13, 295-296 (1976).
[CrossRef]

1974 (1)

M. Glass, D. von der Linde, T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

1965 (1)

Abrams, R. L.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
[CrossRef]

Arizmendi, L.

L. Arizmendi, "photonic applications of lithium niobate crystals," Phys. Stat. Sol. 201, 253-283 (2004).
[CrossRef]

Buse, K.

M. Simon, St. Wevering, K. Buse and E. Kratzig, "The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities," J. Phys. D: Appl. Phys. 30, 144-149 (1997).
[CrossRef]

Chen, X. F.

Y. M. Zhu, X. F. Chen, J. H. Shi, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Chen, X.F.

J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Observation of Šolc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

X.F. Chen, J.H. Shi, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Chen, Y. F.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. Y. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822-1824 (1999).
[CrossRef] [PubMed]

Chen, Y.L.

J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Observation of Šolc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

X.F. Chen, J.H. Shi, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Chen, Y.P.

X.F. Chen, J.H. Shi, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Observation of Šolc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

Feng, Y. Y.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. Y. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822-1824 (1999).
[CrossRef] [PubMed]

Glass, M.

M. Glass, D. von der Linde, T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Henderson, D. M.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
[CrossRef]

Kratzig, E.

M. Simon, St. Wevering, K. Buse and E. Kratzig, "The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities," J. Phys. D: Appl. Phys. 30, 144-149 (1997).
[CrossRef]

E. Kratzig and H. Kurz, "photo-induced currents and voltages in LiNbO3," Ferroelectrics 13, 295-296 (1976).
[CrossRef]

Kurz, H.

E. Kratzig and H. Kurz, "photo-induced currents and voltages in LiNbO3," Ferroelectrics 13, 295-296 (1976).
[CrossRef]

Lotspeich, J. F.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
[CrossRef]

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. Y. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822-1824 (1999).
[CrossRef] [PubMed]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. Y. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822-1824 (1999).
[CrossRef] [PubMed]

Negran, T. J.

M. Glass, D. von der Linde, T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Pinnow, D. R.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
[CrossRef]

Plant, T. K.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
[CrossRef]

Shi, J. H.

Y. M. Zhu, X. F. Chen, J. H. Shi, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Shi, J.H.

J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Observation of Šolc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

X.F. Chen, J.H. Shi, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Simon, M.

M. Simon, St. Wevering, K. Buse and E. Kratzig, "The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities," J. Phys. D: Appl. Phys. 30, 144-149 (1997).
[CrossRef]

Šolc, I.

Stephens, R. R.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
[CrossRef]

von der Linde, D.

M. Glass, D. von der Linde, T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Walker, C. M.

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
[CrossRef]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Wevering, St.

M. Simon, St. Wevering, K. Buse and E. Kratzig, "The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities," J. Phys. D: Appl. Phys. 30, 144-149 (1997).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

Xia, Y.X.

J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Observation of Šolc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

X.F. Chen, J.H. Shi, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Zhu, S. N.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. Y. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822-1824 (1999).
[CrossRef] [PubMed]

Zhu, Y. M.

Y. M. Zhu, X. F. Chen, J. H. Shi, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Zhu, Y. Y.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. Y. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822-1824 (1999).
[CrossRef] [PubMed]

Zhu, Y.M.

J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Observation of Šolc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

X.F. Chen, J.H. Shi, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Electro-optic Šolc-type wavelength filter in periodically poled lithium niobate," Opt. Lett. 28, 2115-2117 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett (1)

D. R. Pinnow, R. L. Abrams, J. F. Lotspeich, D. M. Henderson, T. K. Plant, R. R. Stephens, and C. M. Walker, "An electro-optic tunable filter," Appl. Phys. Lett 34, 391-393 (1979).
[CrossRef]

Appl. Phys. Lett. (3)

Lijun Chen, Jianhong Shi, Xianfeng Chen, Yuxing xia, "Photovoltaic effect in a periodically poled lithium niobate Šolc-type wavelength filter," Appl. Phys. Lett. 88, 121118 (2006).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," Appl. Phys. Lett. 77, 3719-3721 (2000).
[CrossRef]

M. Glass, D. von der Linde, T. J. Negran, "High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3," Appl. Phys. Lett. 25, 233-235 (1974).
[CrossRef]

Electron. Lett. (1)

J.H. Shi, X.F. Chen, Y.P. Chen, Y.M. Zhu, Y.X. Xia, Y.L. Chen, "Observation of Šolc-like filter in periodically poled lithium niobate," Electron. Lett. 39, 224-225 (2003).
[CrossRef]

Ferroelectrics (1)

E. Kratzig and H. Kurz, "photo-induced currents and voltages in LiNbO3," Ferroelectrics 13, 295-296 (1976).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (1)

M. Simon, St. Wevering, K. Buse and E. Kratzig, "The bulk photovoltaic effect of photorefractive LiNbO3:Fe crystals at high light intensities," J. Phys. D: Appl. Phys. 30, 144-149 (1997).
[CrossRef]

Opt. Commun. (1)

Y. M. Zhu, X. F. Chen, J. H. Shi, "Wide-range tunable wavelength filter in periodically poled lithium niobate," Opt. Commun. 228, 139-143 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Stat. Sol. (1)

L. Arizmendi, "photonic applications of lithium niobate crystals," Phys. Stat. Sol. 201, 253-283 (2004).
[CrossRef]

Science (1)

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. Y. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822-1824 (1999).
[CrossRef] [PubMed]

Other (2)

B. I. Sturman, V. M. Fridkin, The photovoltaic and photorefractive effects in noncentrosymmetric materials (Gordo and Breach Science Publishers, 1992).

A. Yariv and P. Yeh, Optical Waves in Crystal: Propagation and Control of Laser Radiation (John Wiley & Sons, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of a PPLN Šolc filter

Fig. 2.
Fig. 2.

Schematic diagram of the experimental setup

Fig. 3.
Fig. 3.

The spectrum of the PPLN filter under 143mw/cm2 UV illumination (empty square symbol) and without UV light illumination (red circle symbol)

Fig. 4.
Fig. 4.

The center wavelength shift of a PPLN filter: measurement (red dot) and fitting curve (solid line).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

θ γ 51 E y ( 1 n e 2 ) ( 1 n o 2 )
{ n x = n o + γ 22 E y n o 3 2 n y = n o γ 22 E y n o 3 2 n z = n e
{ n x = n o γ 13 n o 3 E z 2 n y = n o γ 13 n o 3 E z 2 n z = n e γ 33 n e 3 E z 2 ,
λ ν = ( n o n e ) Λ ( 2 ν + 1 ) = δ n Λ ( 2 ν + 1 ) , ν = 0 , 1 , 2 , ,
[ J 1 J 2 J 3 ] = α [ 0 0 0 0 G 15 G 22 G 22 G 22 0 G 15 0 0 G 31 G 31 G 33 0 0 0 ] [ E 1 E 1 * E 2 E 2 * E 3 E 3 * E 3 E 2 * E 3 E 1 * E 1 E 2 * ]
[ J 1 J 2 J 3 ] = α [ 0 G 22 G 31 ] E 2 E 2 *
[ J 1 J 2 J 3 ] = α [ 0 0 G 33 ] E 3 E 3 *
[ J 1 J 2 J 3 ] = α [ G 22 E 1 E 2 * 0 G 31 E 1 E 1 * + G 31 E 2 E 2 * ]
J = σ E sat
σ = σ d + σ ph I
E sat Z = α G 31 I σ ,
δ n = n o n e = ( n o n e ) 1 2 ( n o 3 γ 33 n e 3 γ 13 ) E sat z
= ( n o n e ) + 1 2 α ( n o 3 γ 33 n e 3 γ 13 ) G 31 I σ

Metrics