Abstract

This paper reports a simple and effective method to fabricate microlens arrays with the ultraviolet-curable resins, and a soft mold of micro-holes array. During capillary forming operation, the surface of the soft mold of micro-holes array is being pressed against the ultraviolet-curable resin layer coated on the plastic substrate. An array of convex lense can be formed in the circular holes of the soft mold due to the capillary filling and surface tension. The microlens arrays have smooth surface and uniform focusing function. The shape and height of micolens can be controlled with a proper combination of pressing pressure, pressing duration and UV curing dose. This technique shows great potential for fabricating polymer microlens arrays with high productivity and low cost.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Daly, R. F. Stevens, M. C. Hutley, and N. Davles, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol.1, 759–766 (1990), http://www.iop.org/EJ/toc/0957-0233/1/8
    [Crossref]
  2. M. Fritze, M. B. Stern, and P. W. Wyatt, “Laser-fabricated glass microlens arrays,” Opt. Lett. 23, 141–143 (1998).
    [Crossref]
  3. W. X. Yu and X.-C. Yuan, “UV induced controllable volume growth in hybrid sol-gel glass for fabrication of a refractive microlens by use of a grayscale mask,” Opt. Express 11, 2253–2258 (2003).
    [Crossref] [PubMed]
  4. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
    [Crossref]
  5. S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12, 6366–6371 (2004).
    [Crossref] [PubMed]
  6. W. Pan, X. Shen, and L. Lin, “Micro-plastic lens array fabricated by a hot intrusion process,” J. Micromech. Microeng. 13, 1063–1071 (2004).
  7. C. Y. Chang, S. Y. Yang, L. S. Huang, and C. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro hot -embossing with a silicon mold,” Infrared phys. Technol. 48, 163–173 (2006).
    [Crossref]

2006 (1)

C. Y. Chang, S. Y. Yang, L. S. Huang, and C. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro hot -embossing with a silicon mold,” Infrared phys. Technol. 48, 163–173 (2006).
[Crossref]

2004 (2)

S.-I. Chang and J.-B. Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Opt. Express 12, 6366–6371 (2004).
[Crossref] [PubMed]

W. Pan, X. Shen, and L. Lin, “Micro-plastic lens array fabricated by a hot intrusion process,” J. Micromech. Microeng. 13, 1063–1071 (2004).

2003 (1)

1998 (1)

1994 (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[Crossref]

Chang, C. H.

C. Y. Chang, S. Y. Yang, L. S. Huang, and C. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro hot -embossing with a silicon mold,” Infrared phys. Technol. 48, 163–173 (2006).
[Crossref]

Chang, C. Y.

C. Y. Chang, S. Y. Yang, L. S. Huang, and C. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro hot -embossing with a silicon mold,” Infrared phys. Technol. 48, 163–173 (2006).
[Crossref]

Chang, S.-I.

Chen, T.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[Crossref]

Cox, W. R.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[Crossref]

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davles, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol.1, 759–766 (1990), http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Davles, N.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davles, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol.1, 759–766 (1990), http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Fritze, M.

Hayes, D. J.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[Crossref]

Huang, L. S.

C. Y. Chang, S. Y. Yang, L. S. Huang, and C. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro hot -embossing with a silicon mold,” Infrared phys. Technol. 48, 163–173 (2006).
[Crossref]

Hutley, M. C.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davles, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol.1, 759–766 (1990), http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Lin, L.

W. Pan, X. Shen, and L. Lin, “Micro-plastic lens array fabricated by a hot intrusion process,” J. Micromech. Microeng. 13, 1063–1071 (2004).

MacFarlane, D. L.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[Crossref]

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[Crossref]

Pan, W.

W. Pan, X. Shen, and L. Lin, “Micro-plastic lens array fabricated by a hot intrusion process,” J. Micromech. Microeng. 13, 1063–1071 (2004).

Shen, X.

W. Pan, X. Shen, and L. Lin, “Micro-plastic lens array fabricated by a hot intrusion process,” J. Micromech. Microeng. 13, 1063–1071 (2004).

Stern, M. B.

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davles, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol.1, 759–766 (1990), http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Tatum, J. A.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[Crossref]

Wyatt, P. W.

Yang, S. Y.

C. Y. Chang, S. Y. Yang, L. S. Huang, and C. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro hot -embossing with a silicon mold,” Infrared phys. Technol. 48, 163–173 (2006).
[Crossref]

Yoon, J.-B.

Yu, W. X.

Yuan, X.-C.

IEEE Photon. Technol. Lett. (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[Crossref]

Infrared phys. Technol. (1)

C. Y. Chang, S. Y. Yang, L. S. Huang, and C. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro hot -embossing with a silicon mold,” Infrared phys. Technol. 48, 163–173 (2006).
[Crossref]

J. Micromech. Microeng. (1)

W. Pan, X. Shen, and L. Lin, “Micro-plastic lens array fabricated by a hot intrusion process,” J. Micromech. Microeng. 13, 1063–1071 (2004).

Opt. Express (2)

Opt. Lett. (1)

Other (1)

D. Daly, R. F. Stevens, M. C. Hutley, and N. Davles, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol.1, 759–766 (1990), http://www.iop.org/EJ/toc/0957-0233/1/8
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

SEM image of soft mold with micro-holes array, (a) micro-holes array on the PDMS mold, (b) zoomed cross-section view of holes

Fig. 2.
Fig. 2.

Photograph and schematic drawing of the UV-capillary forming apparatus

Fig. 3.
Fig. 3.

SEM image and the surface profile of the formed microlens array under the condition of 50kPa pressing pressure, 4 seconds pressing duration and 750mJ/cm2 UV curing dose

Fig. 4.
Fig. 4.

Light spot pattern and intensity profile of a microlens array, (a) light spot image of a microlens array, (b) intensity profiles at the focal plane of a microlens array

Fig. 5.
Fig. 5.

Surface roughness measured in a 5µm×5µm area on the top surface of the fabricated microlens. (The average surface roughness is 3.586nm)

Fig. 6.
Fig. 6.

Shape of microlens under various pressing duration in the UV-capillary forming process

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = D 2 + 4 h 2 8 h , f = R n 1 , and N A = D 2 f ;

Metrics