Abstract

An achromatizing lens has been designed for the human eye in the near infrared range, from 700 to 900 nm, for retinal imaging purposes. Analysis of the performance of the lens, including tolerance to misalignments, has been mathematically accomplished by using an existing eye model. The calculations have shown a virtually perfect correction of the ocular longitudinal chromatic aberration, while still keeping a high optical quality. Ocular aberrations in five subjects have been measured with and without the achromatizing lens by using a Hartmann-Shack wavefront sensor and a broad bandwidth femtosecond Ti:sapphire laser in the spectral range of interest with a set of interference filters, studying the benefits and limits in the use of the achromatizing lens. Ocular longitudinal chromatic aberration has been experimentally demonstrated to be fully corrected by the proposed lens, with no induction of any other parasitic aberration. The practical implementation of the achromatizing lens for Ophthalmoscopy, specifically for optical coherence tomography where the use of polychromatic light sources in the near infrared portion of the spectrum is mandatory, has been considered. The potential benefits of using this lens in combination with adaptive optics to achieve a full aberration correction of the human eye for retinal imaging have also been discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Sivak and T. Mandelman, "Chromatic dispersion of the ocular media," Vision Res. 16, 997-1003 (1982).
    [CrossRef]
  2. P. A. Howarth, "The lateral chromatic aberration of the eye," Ophthalmic. Physiol. Opt. 4, 223-226 (1984).
    [CrossRef]
  3. L. N. Thibos, "Calculation of the influence of lateral chromatic aberration on image quality across the visual field," J. Opt. Soc. Am. A 4, 1673-1680 (1987).
    [CrossRef] [PubMed]
  4. Y. U. Ogboso and H. E. Bedell, "Magnitude of lateral chromatic aberration across the retina of the human eye," J. Opt. Soc. Am. A 4, 1666-1672 (1987).
    [CrossRef] [PubMed]
  5. I. Newton, Opticks (1730), fourth edition, Book I, Part 2, Prop. VIII. (Reprinted by Bell, London, 1931).
  6. T. Young, "An account of some cases of the production of colors, not hitherto described," Philos. Trans. Roy. Soc. London 92, 387-397 (1802).
    [CrossRef]
  7. J. Fraunhofer, "Bestimmung des Brechungs- und des Farbenzerstreuungs-Vermbgens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre," Ann. Phys. (Gilbert) 56, 264-313 (1817).
    [CrossRef]
  8. A. Matthiessen, "Determination exacte de la dispersion de l'oeil humain, par des mesures directes," Comptes rendus Acad. Sci., Paris 24, 875 (1847).
  9. H. von Helmholtz, Treatise on Physiological Optics (1866); translation from third German edition (1909) ed. by Southall, Opt. Soc. Am. Vol. I (1924).
  10. G. Wald and D. T. Griffin, "The change in refractive power of the human eye in dim and bright light," J. Opt. Soc. Am. 37, 321-329 (1947).
    [CrossRef] [PubMed]
  11. A. Ivanoff, Les aberrations de l’Oeil, (Mason, Paris, 1953).
  12. R. E. Bedford and G. Wyszecki, "Axial chromatic aberration of the human eye," J. Opt. Soc. Am. 47, 564-565 (1957).
    [CrossRef] [PubMed]
  13. M. Millodot and J. G. Sivak, "Influence of accommodation on the chromatic aberration of the eye," Br. J. Physiol. Opt. 28, 169-174 (1973).
    [PubMed]
  14. W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration the human eye," Vision Res. 16, 99-105 (1976).
    [CrossRef]
  15. P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the eye and its correction," Vision Res. 26, 361-366 (1986).
    [CrossRef] [PubMed]
  16. D. P. Cooper and P. L. Pease, "Longitudinal chromatic aberration of the human eye and wavelength in focus," Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
    [PubMed]
  17. L. N. Thibos, A. Bradley, and X. Zhang, "The effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
    [CrossRef]
  18. C. Ware, "Human axial chromatic aberration found not to decline with age," A. Graefes Arch. Klin. Exper. Ophthalmol. 218, 39-41 (1982).
    [CrossRef]
  19. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988).
    [CrossRef] [PubMed]
  20. M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 37, 513-521 (1997).
  21. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef]
  22. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
    [CrossRef]
  23. F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, "Ocular wave-front statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
    [CrossRef] [PubMed]
  24. P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002).
    [CrossRef]
  25. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
    [CrossRef] [PubMed]
  26. D. A. Atchinson and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-36 (2005).
    [CrossRef]
  27. A. C. van Heel, "Correcting the spherical and chromatic aberrations of the eye," J. Opt. Soc. Am. 36, 237- 239 (1947).
  28. A. Ames and C. A. Proctor, "Dioptrics of the eye," J. Opt. Soc. Am. 5, 22-84 (1921).
  29. A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
    [PubMed]
  30. I. Powell, "Lenses for correcting chromatic aberration of the eye," App. Opt. 20, 4152-4155 (1981).
    [CrossRef]
  31. F. C. Delory and K. P. Plibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1067 (1989).
    [CrossRef]
  32. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  33. T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
    [CrossRef]
  34. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
    [CrossRef] [PubMed]
  35. Y. Zhang, J. Rha, R. S. Jonnal, and D. T. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005).
    [CrossRef] [PubMed]
  36. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005).
    [CrossRef] [PubMed]
  37. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, and W. Drexler, P. M. Prieto and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  38. E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
    [CrossRef] [PubMed]
  39. E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005).
    [CrossRef] [PubMed]
  40. A. Gullstrand, Appendix II in Handbuch der Physiologischen Optik, H. von Helmholtz, ed., 3rd ed. (Voss, Hamburg, 1909).
  41. Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, Berlin, 1980).
  42. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "Spherical aberration of the reduced schematic eye with elliptical refracting surface," Optom. Vision Sci. 74, 548-556 (1997).
    [CrossRef]
  43. O. Pomerantzeff, M. Pankratov, G.-J. Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984).
    [PubMed]
  44. H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
    [CrossRef]
  45. D. A. Atchison and G. Smith, "Continuous gradient index and shell models of the human lens," Vision Res. 35, 2529-2538 (1995).
    [CrossRef] [PubMed]
  46. R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985).
    [CrossRef] [PubMed]
  47. W. Lotmar, "Theoretical eye model with aspherics," J. Opt. Soc. Am. 61, 1522-1529 (1971).
    [CrossRef]
  48. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of wide-angle schematic eye model," J. Opt. Soc Am. A 16, 1881-1891 (1999).
    [CrossRef]
  49. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Near infrared ocular wavefront sensing with a femtosecond laser," ARVO abstract 2836 (2004).
  50. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
    [CrossRef]
  51. American National Standard Institute, American National Standard for Safe Use of Lasers, ANSI Z 136-1 (2000).

2005 (6)

2004 (1)

2003 (1)

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

2002 (3)

2001 (2)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

2000 (1)

1999 (1)

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of wide-angle schematic eye model," J. Opt. Soc Am. A 16, 1881-1891 (1999).
[CrossRef]

1997 (3)

H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "Spherical aberration of the reduced schematic eye with elliptical refracting surface," Optom. Vision Sci. 74, 548-556 (1997).
[CrossRef]

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 37, 513-521 (1997).

1995 (1)

D. A. Atchison and G. Smith, "Continuous gradient index and shell models of the human lens," Vision Res. 35, 2529-2538 (1995).
[CrossRef] [PubMed]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, and X. Zhang, "The effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

1989 (1)

F. C. Delory and K. P. Plibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1067 (1989).
[CrossRef]

1988 (2)

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

D. P. Cooper and P. L. Pease, "Longitudinal chromatic aberration of the human eye and wavelength in focus," Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
[PubMed]

1987 (2)

1986 (1)

P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the eye and its correction," Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

1985 (1)

1984 (2)

P. A. Howarth, "The lateral chromatic aberration of the eye," Ophthalmic. Physiol. Opt. 4, 223-226 (1984).
[CrossRef]

O. Pomerantzeff, M. Pankratov, G.-J. Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984).
[PubMed]

1982 (3)

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

J. G. Sivak and T. Mandelman, "Chromatic dispersion of the ocular media," Vision Res. 16, 997-1003 (1982).
[CrossRef]

C. Ware, "Human axial chromatic aberration found not to decline with age," A. Graefes Arch. Klin. Exper. Ophthalmol. 218, 39-41 (1982).
[CrossRef]

1981 (1)

I. Powell, "Lenses for correcting chromatic aberration of the eye," App. Opt. 20, 4152-4155 (1981).
[CrossRef]

1976 (1)

W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration the human eye," Vision Res. 16, 99-105 (1976).
[CrossRef]

1973 (1)

M. Millodot and J. G. Sivak, "Influence of accommodation on the chromatic aberration of the eye," Br. J. Physiol. Opt. 28, 169-174 (1973).
[PubMed]

1971 (1)

1957 (1)

1947 (2)

1921 (1)

1847 (1)

A. Matthiessen, "Determination exacte de la dispersion de l'oeil humain, par des mesures directes," Comptes rendus Acad. Sci., Paris 24, 875 (1847).

1817 (1)

J. Fraunhofer, "Bestimmung des Brechungs- und des Farbenzerstreuungs-Vermbgens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre," Ann. Phys. (Gilbert) 56, 264-313 (1817).
[CrossRef]

1802 (1)

T. Young, "An account of some cases of the production of colors, not hitherto described," Philos. Trans. Roy. Soc. London 92, 387-397 (1802).
[CrossRef]

Ahnelt, P.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Ames, A.

Artal, P.

Atchinson, D. A.

Atchison, D. A.

D. A. Atchison and G. Smith, "Continuous gradient index and shell models of the human lens," Vision Res. 35, 2529-2538 (1995).
[CrossRef] [PubMed]

Bedell, H. E.

Bedford, R. E.

Benito, A.

F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, "Ocular wave-front statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Berrio, E.

Bescós, J.

Bower, B.

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "Spherical aberration of the reduced schematic eye with elliptical refracting surface," Optom. Vision Sci. 74, 548-556 (1997).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Zhang, "The effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the eye and its correction," Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

Brennan, N. A.

Castejón-Mochón, F.

F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, "Ocular wave-front statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Charman, W. N.

W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration the human eye," Vision Res. 16, 99-105 (1976).
[CrossRef]

Cheng, X.

Choi, S.

Cooper, D. P.

D. P. Cooper and P. L. Pease, "Longitudinal chromatic aberration of the human eye and wavelength in focus," Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
[PubMed]

Cox, I. G.

Delory, F. C.

F. C. Delory and K. P. Plibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1067 (1989).
[CrossRef]

Drexler, W.

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, and W. Drexler, P. M. Prieto and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Dufault, P.

O. Pomerantzeff, M. Pankratov, G.-J. Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984).
[PubMed]

Escudero-Sanz, I.

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of wide-angle schematic eye model," J. Opt. Soc Am. A 16, 1881-1891 (1999).
[CrossRef]

Fercher, A. F.

Fernández, E. J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fraunhofer, J.

J. Fraunhofer, "Bestimmung des Brechungs- und des Farbenzerstreuungs-Vermbgens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre," Ann. Phys. (Gilbert) 56, 264-313 (1817).
[CrossRef]

Fuji, T.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Goelz, S.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Griffin, D. T.

Guirao, A.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hong, X.

Howarth, P. A.

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the eye and its correction," Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

P. A. Howarth, "The lateral chromatic aberration of the eye," Ophthalmic. Physiol. Opt. 4, 223-226 (1984).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Izatt, J.

Jennings, J. A. M.

W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration the human eye," Vision Res. 16, 99-105 (1976).
[CrossRef]

Jones, S.

Jonnal, R. S.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Katz, M.

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Krausz, F.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Laut, S.

Leitgeb, R.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Lewis, A. L.

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Liou, H.-L.

López-Gil, N.

F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, "Ocular wave-front statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Losada, M. A.

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 37, 513-521 (1997).

Lotmar, W.

Mandelman, T.

J. G. Sivak and T. Mandelman, "Chromatic dispersion of the ocular media," Vision Res. 16, 997-1003 (1982).
[CrossRef]

Matthiessen, A.

A. Matthiessen, "Determination exacte de la dispersion de l'oeil humain, par des mesures directes," Comptes rendus Acad. Sci., Paris 24, 875 (1847).

Miller, D. T.

Millodot, M.

M. Millodot and J. G. Sivak, "Influence of accommodation on the chromatic aberration of the eye," Br. J. Physiol. Opt. 28, 169-174 (1973).
[PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Navarro, R.

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of wide-angle schematic eye model," J. Opt. Soc Am. A 16, 1881-1891 (1999).
[CrossRef]

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 37, 513-521 (1997).

R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985).
[CrossRef] [PubMed]

Oehrlein, C.

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

Ogboso, Y. U.

Olivier, S.

Pankratov, M.

O. Pomerantzeff, M. Pankratov, G.-J. Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984).
[PubMed]

Pease, P. L.

D. P. Cooper and P. L. Pease, "Longitudinal chromatic aberration of the human eye and wavelength in focus," Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
[PubMed]

Piers, P.

Plibsen, K. P.

F. C. Delory and K. P. Plibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1067 (1989).
[CrossRef]

Pomerantzeff, O.

O. Pomerantzeff, M. Pankratov, G.-J. Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984).
[PubMed]

Porter, J.

Povazay, B.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Powell, I.

I. Powell, "Lenses for correcting chromatic aberration of the eye," App. Opt. 20, 4152-4155 (1981).
[CrossRef]

Prieto, P. M.

Proctor, C. A.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rha, J.

Rynders, M. C.

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 37, 513-521 (1997).

Santamaría, J.

Sattmann, H.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, and W. Drexler, P. M. Prieto and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sivak, J. G.

J. G. Sivak and T. Mandelman, "Chromatic dispersion of the ocular media," Vision Res. 16, 997-1003 (1982).
[CrossRef]

M. Millodot and J. G. Sivak, "Influence of accommodation on the chromatic aberration of the eye," Br. J. Physiol. Opt. 28, 169-174 (1973).
[PubMed]

Smith, G.

D. A. Atchinson and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-36 (2005).
[CrossRef]

D. A. Atchison and G. Smith, "Continuous gradient index and shell models of the human lens," Vision Res. 35, 2529-2538 (1995).
[CrossRef] [PubMed]

Still, D. L.

Stingl, A.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Tempea, G.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Thibos, L. N.

Unterhuber, A.

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005).
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, and W. Drexler, P. M. Prieto and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

van Heel, A. C.

Vargas-Martín, F.

Wald, G.

Wang, G.-J.

O. Pomerantzeff, M. Pankratov, G.-J. Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984).
[PubMed]

Ware, C.

C. Ware, "Human axial chromatic aberration found not to decline with age," A. Graefes Arch. Klin. Exper. Ophthalmol. 218, 39-41 (1982).
[CrossRef]

Werner, J.

Williams, D. R.

Wyszecki, G.

Yakolev, V. S.

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Ye, M.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "Spherical aberration of the reduced schematic eye with elliptical refracting surface," Optom. Vision Sci. 74, 548-556 (1997).
[CrossRef]

Young, T.

T. Young, "An account of some cases of the production of colors, not hitherto described," Philos. Trans. Roy. Soc. London 92, 387-397 (1802).
[CrossRef]

Zawadzki, R.

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "Spherical aberration of the reduced schematic eye with elliptical refracting surface," Optom. Vision Sci. 74, 548-556 (1997).
[CrossRef]

L. N. Thibos, A. Bradley, and X. Zhang, "The effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

Zhang, X. X.

Zhang, Y.

Zhao, M.

A. Graefes Arch. Klin. Exper. Ophthalmol. (1)

C. Ware, "Human axial chromatic aberration found not to decline with age," A. Graefes Arch. Klin. Exper. Ophthalmol. 218, 39-41 (1982).
[CrossRef]

Am. J. Optom. Physiol. Opt. (3)

D. P. Cooper and P. L. Pease, "Longitudinal chromatic aberration of the human eye and wavelength in focus," Am. J. Optom. Physiol. Opt. 65, 99-107 (1988).
[PubMed]

A. L. Lewis, M. Katz, and C. Oehrlein, "A modified achromatizing lens," Am. J. Optom. Physiol. Opt. 59, 909-911 (1982).
[PubMed]

O. Pomerantzeff, M. Pankratov, G.-J. Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984).
[PubMed]

App. Opt. (2)

I. Powell, "Lenses for correcting chromatic aberration of the eye," App. Opt. 20, 4152-4155 (1981).
[CrossRef]

F. C. Delory and K. P. Plibsen, "Spectral reflectance of the human ocular fundus," App. Opt. 28, 1061-1067 (1989).
[CrossRef]

Appl. Phys. B (1)

T. Fuji, A. Unterhuber, V. S. Yakolev, G. Tempea, A. Stingl, F. Krausz, and W. Drexler, "Generation of smooth, ultra-broadband spectral directly from a prism-less Ti:sapphire laser," Appl. Phys. B 77, 125-128 (2003).
[CrossRef]

Br. J. Physiol. Opt. (1)

M. Millodot and J. G. Sivak, "Influence of accommodation on the chromatic aberration of the eye," Br. J. Physiol. Opt. 28, 169-174 (1973).
[PubMed]

J. Opt. Soc Am. A (1)

I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of wide-angle schematic eye model," J. Opt. Soc Am. A 16, 1881-1891 (1999).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. A (10)

D. A. Atchinson and G. Smith, "Chromatic dispersions of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-36 (2005).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002).
[CrossRef]

P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002).
[CrossRef]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?," J. Opt. Soc. Am. A 5, 2087-2092 (1988).
[CrossRef] [PubMed]

L. N. Thibos, "Calculation of the influence of lateral chromatic aberration on image quality across the visual field," J. Opt. Soc. Am. A 4, 1673-1680 (1987).
[CrossRef] [PubMed]

Y. U. Ogboso and H. E. Bedell, "Magnitude of lateral chromatic aberration across the retina of the human eye," J. Opt. Soc. Am. A 4, 1666-1672 (1987).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985).
[CrossRef] [PubMed]

H.-L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
[CrossRef]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, "Ultrahighresolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Ophthalmic. Physiol. Opt. (1)

P. A. Howarth, "The lateral chromatic aberration of the eye," Ophthalmic. Physiol. Opt. 4, 223-226 (1984).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Optom. Vision Sci. (2)

L. N. Thibos, A. Bradley, and X. Zhang, "The effect of ocular chromatic aberration on monocular visual performance," Optom. Vision Sci. 68, 599-607 (1991).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "Spherical aberration of the reduced schematic eye with elliptical refracting surface," Optom. Vision Sci. 74, 548-556 (1997).
[CrossRef]

Paris (1)

A. Matthiessen, "Determination exacte de la dispersion de l'oeil humain, par des mesures directes," Comptes rendus Acad. Sci., Paris 24, 875 (1847).

Philos. Trans. Roy. Soc. London (1)

T. Young, "An account of some cases of the production of colors, not hitherto described," Philos. Trans. Roy. Soc. London 92, 387-397 (1802).
[CrossRef]

Phys. (Gilbert) (1)

J. Fraunhofer, "Bestimmung des Brechungs- und des Farbenzerstreuungs-Vermbgens verschiedener Glasarten, in Bezug auf die Vervollkommnung achromatischer Fernröhre," Ann. Phys. (Gilbert) 56, 264-313 (1817).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman,W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Vision Res. (7)

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, "Ocular wave-front statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

J. G. Sivak and T. Mandelman, "Chromatic dispersion of the ocular media," Vision Res. 16, 997-1003 (1982).
[CrossRef]

M. C. Rynders, R. Navarro, and M. A. Losada, "Objective measurement of the off-axis longitudinal chromatic aberration in the human eye," Vision Res. 37, 513-521 (1997).

W. N. Charman and J. A. M. Jennings, "Objective measurements of the longitudinal chromatic aberration the human eye," Vision Res. 16, 99-105 (1976).
[CrossRef]

P. A. Howarth and A. Bradley, "The longitudinal chromatic aberration of the eye and its correction," Vision Res. 26, 361-366 (1986).
[CrossRef] [PubMed]

D. A. Atchison and G. Smith, "Continuous gradient index and shell models of the human lens," Vision Res. 35, 2529-2538 (1995).
[CrossRef] [PubMed]

Other (7)

A. Gullstrand, Appendix II in Handbuch der Physiologischen Optik, H. von Helmholtz, ed., 3rd ed. (Voss, Hamburg, 1909).

Y. Le Grand and S. G. El Hage, Physiological Optics (Springer-Verlag, Berlin, 1980).

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, "Near infrared ocular wavefront sensing with a femtosecond laser," ARVO abstract 2836 (2004).

American National Standard Institute, American National Standard for Safe Use of Lasers, ANSI Z 136-1 (2000).

A. Ivanoff, Les aberrations de l’Oeil, (Mason, Paris, 1953).

I. Newton, Opticks (1730), fourth edition, Book I, Part 2, Prop. VIII. (Reprinted by Bell, London, 1931).

H. von Helmholtz, Treatise on Physiological Optics (1866); translation from third German edition (1909) ed. by Southall, Opt. Soc. Am. Vol. I (1924).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup for testing the effect of the achromatizing lens (AL) on the human eye. The apparatus uses a broad bandwidth pulsed laser emitting in the NIR and a Hartmann-Shack (H-S) wavefront sensor. The eye’s entrance pupil and the AL are optically conjugated in the system. NF and IF are neutral and interference filters, respectively.

Fig. 2.
Fig. 2.

Left: Achromatizing lens (AL) design. All dimensions are given in mm. Right: Chromatic focal shift at the retina for the eye model (see text for more details) in the NIR (in blue color) and for the combination of the eye model and the AL (in red). The dashed line indicates the zero chromatic shift.

Fig. 3.
Fig. 3.

Geometrical point spread functions (PSFs) of the eye model calculated without and with the achromatizing lens through a 6 mm pupil with marginal rays for several wavelengths, presented with different colors. The polychromatic PSFs in both situations are showed at the bottom.

Fig. 4.
Fig. 4.

Tolerance of the achromatizing lens to tilts (left column) and to off-axis centering (right side of the figure). The change of defocus and the lateral color are presented in both cases as a function of the tilt and the displacement, in degrees and in millimeters, respectively.

Fig. 5.
Fig. 5.

Top: average ocular aberrations (Zernike polynomials, 6 mm diameter), across all 60 samples and all wavelengths, for subject S1 with and without AL (red and blue color, respectively). Error bars correspond to the standard deviation. Bottom: root mean square (RMS) of the wavefront aberration for each subject with and without the AL (red and blue color, respectively).

Fig. 6.
Fig. 6.

Defocus obtained in the NIR for each subject, presented with different colors and symbols, without and with the achromatizing lens (left and right side, respectively).

Fig. 7.
Fig. 7.

Average defocus in the NIR obtained from five subjects with and without the achromatizing lens (red and blur color, respectively). Error bars show the standard deviation. All data are shifted to the reference wavelength 700 nm. The dashed line shows the evolution of the defocus predicted by the eye model. The dotted line indicates the zero defocus value.

Metrics