Abstract

We report on the first observation, to our knowledge, of self-focusing without an external electric field in barium titanate crystals under cw laser beam irradiance. This effect we observed at an intensity of 0.2W/cm2 on the 633nm wavelength regime in the case of ordinarily as well as extraordinarily polarized light.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
    [Crossref] [PubMed]
  2. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
    [Crossref] [PubMed]
  3. E. DelRe, M. Tamburrini, and G. Egidi, Bright photorefractive spatial solitons in tilted BaTiO3, presented at the Eleventh Annual Meeting of the [IEEE Lasers and Electro-Optics Society] (LEOS 98), Orlando, Fla., 3–4 December 1998.
  4. J. Andrade-Lucio, M. Iturbe-Castillo, P. Marquez-Aguilar, and R. Ramos-Garcia, “Self-focusing in photorefractive BaTiO3 crystal under external DC electric field,” Opt. Quantum Electron. 30, 829–834 (1998).
    [Crossref]
  5. P. Guenter and J. Huignard, Photorefractive Materials and Their Applications 1 - Fundamental Phenomena (Springer, Berlin, 1988).
    [Crossref]
  6. W. Kaenzig, “Space charge layer near the surface of a ferroelectric,” Phys. Rev. 98, 549–550 (1955).
    [Crossref]
  7. V. Matusevich, A. Krasnoberski, D. Khmelnitski, A. Kiessling, and R. Kowarschik, “Some aspects of fanning, self-focusing and self-defocusing in a photorefractive Ba0.77Ca0.23TiO3 crystal,” J. Opt. A: Pure Appl. Opt. 6, 507–513 (2003).
    [Crossref]
  8. G. Valley, M. Segev, B. Crosignani, A. Yariv, and M. B. Fejer, “Dark and Bright Photovoltaic Spatial Solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
    [Crossref] [PubMed]
  9. J. Liu, “Existence and stability of rigid photovoltaic solitons in an open-circuit amplifying or absorbing photo-voltaic medium,” Phys. Rev. E 68, 0266071–0266077 (2003).
    [Crossref]
  10. F. Chen, “Optically induced change of refractive indices in LiNbO3,” J. App. Phys. 40, 3389–3396 (1969).
    [Crossref]
  11. L. Palfalv, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A 5, S280–S283 (2003).
    [Crossref]
  12. M. Horowitz, R. Daisy, O. Werner, and B. Fischer, “Large thermal nonlinearities and spatial self-phase modulation in SrxBa1-xNb2O6 and BaTiO3 crystals,” J. Appl. Phys. 17, 475–477 (1992).
  13. D. Nolte, Photorefractive effects and materials (Kluwer Acad. Publ., Boston, 1995).
  14. G. Bacher, M. Chiao, G. Dunning, M. Klein, C. Nelson, and B. Wechsler, “Ultralong dark decay measurements in BaTiO3,” Opt. Lett. 21, 18–20 (1996).
    [Crossref] [PubMed]

2003 (3)

V. Matusevich, A. Krasnoberski, D. Khmelnitski, A. Kiessling, and R. Kowarschik, “Some aspects of fanning, self-focusing and self-defocusing in a photorefractive Ba0.77Ca0.23TiO3 crystal,” J. Opt. A: Pure Appl. Opt. 6, 507–513 (2003).
[Crossref]

J. Liu, “Existence and stability of rigid photovoltaic solitons in an open-circuit amplifying or absorbing photo-voltaic medium,” Phys. Rev. E 68, 0266071–0266077 (2003).
[Crossref]

L. Palfalv, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A 5, S280–S283 (2003).
[Crossref]

1998 (1)

J. Andrade-Lucio, M. Iturbe-Castillo, P. Marquez-Aguilar, and R. Ramos-Garcia, “Self-focusing in photorefractive BaTiO3 crystal under external DC electric field,” Opt. Quantum Electron. 30, 829–834 (1998).
[Crossref]

1996 (1)

1994 (1)

G. Valley, M. Segev, B. Crosignani, A. Yariv, and M. B. Fejer, “Dark and Bright Photovoltaic Spatial Solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[Crossref] [PubMed]

1993 (1)

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

1992 (2)

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

M. Horowitz, R. Daisy, O. Werner, and B. Fischer, “Large thermal nonlinearities and spatial self-phase modulation in SrxBa1-xNb2O6 and BaTiO3 crystals,” J. Appl. Phys. 17, 475–477 (1992).

1969 (1)

F. Chen, “Optically induced change of refractive indices in LiNbO3,” J. App. Phys. 40, 3389–3396 (1969).
[Crossref]

1955 (1)

W. Kaenzig, “Space charge layer near the surface of a ferroelectric,” Phys. Rev. 98, 549–550 (1955).
[Crossref]

Almasi, G.

L. Palfalv, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A 5, S280–S283 (2003).
[Crossref]

Andrade-Lucio, J.

J. Andrade-Lucio, M. Iturbe-Castillo, P. Marquez-Aguilar, and R. Ramos-Garcia, “Self-focusing in photorefractive BaTiO3 crystal under external DC electric field,” Opt. Quantum Electron. 30, 829–834 (1998).
[Crossref]

Bacher, G.

Chen, F.

F. Chen, “Optically induced change of refractive indices in LiNbO3,” J. App. Phys. 40, 3389–3396 (1969).
[Crossref]

Chiao, M.

Crosignani, B.

G. Valley, M. Segev, B. Crosignani, A. Yariv, and M. B. Fejer, “Dark and Bright Photovoltaic Spatial Solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[Crossref] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Daisy, R.

M. Horowitz, R. Daisy, O. Werner, and B. Fischer, “Large thermal nonlinearities and spatial self-phase modulation in SrxBa1-xNb2O6 and BaTiO3 crystals,” J. Appl. Phys. 17, 475–477 (1992).

DelRe, E.

E. DelRe, M. Tamburrini, and G. Egidi, Bright photorefractive spatial solitons in tilted BaTiO3, presented at the Eleventh Annual Meeting of the [IEEE Lasers and Electro-Optics Society] (LEOS 98), Orlando, Fla., 3–4 December 1998.

Dunning, G.

Duree, G. C.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Egidi, G.

E. DelRe, M. Tamburrini, and G. Egidi, Bright photorefractive spatial solitons in tilted BaTiO3, presented at the Eleventh Annual Meeting of the [IEEE Lasers and Electro-Optics Society] (LEOS 98), Orlando, Fla., 3–4 December 1998.

Fejer, M. B.

G. Valley, M. Segev, B. Crosignani, A. Yariv, and M. B. Fejer, “Dark and Bright Photovoltaic Spatial Solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[Crossref] [PubMed]

Fischer, B.

M. Horowitz, R. Daisy, O. Werner, and B. Fischer, “Large thermal nonlinearities and spatial self-phase modulation in SrxBa1-xNb2O6 and BaTiO3 crystals,” J. Appl. Phys. 17, 475–477 (1992).

Fisher, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Guenter, P.

P. Guenter and J. Huignard, Photorefractive Materials and Their Applications 1 - Fundamental Phenomena (Springer, Berlin, 1988).
[Crossref]

Hebling, J.

L. Palfalv, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A 5, S280–S283 (2003).
[Crossref]

Horowitz, M.

M. Horowitz, R. Daisy, O. Werner, and B. Fischer, “Large thermal nonlinearities and spatial self-phase modulation in SrxBa1-xNb2O6 and BaTiO3 crystals,” J. Appl. Phys. 17, 475–477 (1992).

Huignard, J.

P. Guenter and J. Huignard, Photorefractive Materials and Their Applications 1 - Fundamental Phenomena (Springer, Berlin, 1988).
[Crossref]

Iturbe-Castillo, M.

J. Andrade-Lucio, M. Iturbe-Castillo, P. Marquez-Aguilar, and R. Ramos-Garcia, “Self-focusing in photorefractive BaTiO3 crystal under external DC electric field,” Opt. Quantum Electron. 30, 829–834 (1998).
[Crossref]

Kaenzig, W.

W. Kaenzig, “Space charge layer near the surface of a ferroelectric,” Phys. Rev. 98, 549–550 (1955).
[Crossref]

Khmelnitski, D.

V. Matusevich, A. Krasnoberski, D. Khmelnitski, A. Kiessling, and R. Kowarschik, “Some aspects of fanning, self-focusing and self-defocusing in a photorefractive Ba0.77Ca0.23TiO3 crystal,” J. Opt. A: Pure Appl. Opt. 6, 507–513 (2003).
[Crossref]

Kiessling, A.

V. Matusevich, A. Krasnoberski, D. Khmelnitski, A. Kiessling, and R. Kowarschik, “Some aspects of fanning, self-focusing and self-defocusing in a photorefractive Ba0.77Ca0.23TiO3 crystal,” J. Opt. A: Pure Appl. Opt. 6, 507–513 (2003).
[Crossref]

Klein, M.

Kowarschik, R.

V. Matusevich, A. Krasnoberski, D. Khmelnitski, A. Kiessling, and R. Kowarschik, “Some aspects of fanning, self-focusing and self-defocusing in a photorefractive Ba0.77Ca0.23TiO3 crystal,” J. Opt. A: Pure Appl. Opt. 6, 507–513 (2003).
[Crossref]

Krasnoberski, A.

V. Matusevich, A. Krasnoberski, D. Khmelnitski, A. Kiessling, and R. Kowarschik, “Some aspects of fanning, self-focusing and self-defocusing in a photorefractive Ba0.77Ca0.23TiO3 crystal,” J. Opt. A: Pure Appl. Opt. 6, 507–513 (2003).
[Crossref]

Liu, J.

J. Liu, “Existence and stability of rigid photovoltaic solitons in an open-circuit amplifying or absorbing photo-voltaic medium,” Phys. Rev. E 68, 0266071–0266077 (2003).
[Crossref]

Marquez-Aguilar, P.

J. Andrade-Lucio, M. Iturbe-Castillo, P. Marquez-Aguilar, and R. Ramos-Garcia, “Self-focusing in photorefractive BaTiO3 crystal under external DC electric field,” Opt. Quantum Electron. 30, 829–834 (1998).
[Crossref]

Matusevich, V.

V. Matusevich, A. Krasnoberski, D. Khmelnitski, A. Kiessling, and R. Kowarschik, “Some aspects of fanning, self-focusing and self-defocusing in a photorefractive Ba0.77Ca0.23TiO3 crystal,” J. Opt. A: Pure Appl. Opt. 6, 507–513 (2003).
[Crossref]

Nelson, C.

Neurgaonkar, R. R.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Nolte, D.

D. Nolte, Photorefractive effects and materials (Kluwer Acad. Publ., Boston, 1995).

Palfalv, L.

L. Palfalv, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A 5, S280–S283 (2003).
[Crossref]

Peter, A.

L. Palfalv, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A 5, S280–S283 (2003).
[Crossref]

Polgar, K.

L. Palfalv, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A 5, S280–S283 (2003).
[Crossref]

Porto, P. D.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Ramos-Garcia, R.

J. Andrade-Lucio, M. Iturbe-Castillo, P. Marquez-Aguilar, and R. Ramos-Garcia, “Self-focusing in photorefractive BaTiO3 crystal under external DC electric field,” Opt. Quantum Electron. 30, 829–834 (1998).
[Crossref]

Salamo, G. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Segev, M.

G. Valley, M. Segev, B. Crosignani, A. Yariv, and M. B. Fejer, “Dark and Bright Photovoltaic Spatial Solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[Crossref] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

Sharp, E. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Shultz, J. L.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Tamburrini, M.

E. DelRe, M. Tamburrini, and G. Egidi, Bright photorefractive spatial solitons in tilted BaTiO3, presented at the Eleventh Annual Meeting of the [IEEE Lasers and Electro-Optics Society] (LEOS 98), Orlando, Fla., 3–4 December 1998.

Valley, G.

G. Valley, M. Segev, B. Crosignani, A. Yariv, and M. B. Fejer, “Dark and Bright Photovoltaic Spatial Solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[Crossref] [PubMed]

Wechsler, B.

Werner, O.

M. Horowitz, R. Daisy, O. Werner, and B. Fischer, “Large thermal nonlinearities and spatial self-phase modulation in SrxBa1-xNb2O6 and BaTiO3 crystals,” J. Appl. Phys. 17, 475–477 (1992).

Yariv, A.

G. Valley, M. Segev, B. Crosignani, A. Yariv, and M. B. Fejer, “Dark and Bright Photovoltaic Spatial Solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[Crossref] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

J. App. Phys. (1)

F. Chen, “Optically induced change of refractive indices in LiNbO3,” J. App. Phys. 40, 3389–3396 (1969).
[Crossref]

J. Appl. Phys. (1)

M. Horowitz, R. Daisy, O. Werner, and B. Fischer, “Large thermal nonlinearities and spatial self-phase modulation in SrxBa1-xNb2O6 and BaTiO3 crystals,” J. Appl. Phys. 17, 475–477 (1992).

J. Opt. A (1)

L. Palfalv, J. Hebling, G. Almasi, A. Peter, and K. Polgar, “Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects,” J. Opt. A 5, S280–S283 (2003).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

V. Matusevich, A. Krasnoberski, D. Khmelnitski, A. Kiessling, and R. Kowarschik, “Some aspects of fanning, self-focusing and self-defocusing in a photorefractive Ba0.77Ca0.23TiO3 crystal,” J. Opt. A: Pure Appl. Opt. 6, 507–513 (2003).
[Crossref]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

J. Andrade-Lucio, M. Iturbe-Castillo, P. Marquez-Aguilar, and R. Ramos-Garcia, “Self-focusing in photorefractive BaTiO3 crystal under external DC electric field,” Opt. Quantum Electron. 30, 829–834 (1998).
[Crossref]

Phys. Rev. (1)

W. Kaenzig, “Space charge layer near the surface of a ferroelectric,” Phys. Rev. 98, 549–550 (1955).
[Crossref]

Phys. Rev. A (1)

G. Valley, M. Segev, B. Crosignani, A. Yariv, and M. B. Fejer, “Dark and Bright Photovoltaic Spatial Solitons,” Phys. Rev. A 50, R4457–R4460 (1994).
[Crossref] [PubMed]

Phys. Rev. E (1)

J. Liu, “Existence and stability of rigid photovoltaic solitons in an open-circuit amplifying or absorbing photo-voltaic medium,” Phys. Rev. E 68, 0266071–0266077 (2003).
[Crossref]

Phys. Rev. Lett. (2)

M. Segev, B. Crosignani, A. Yariv, and B. Fisher, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923–926 (1992).
[Crossref] [PubMed]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, P. D. Porto, E. J. Sharp, and R. R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[Crossref] [PubMed]

Other (3)

E. DelRe, M. Tamburrini, and G. Egidi, Bright photorefractive spatial solitons in tilted BaTiO3, presented at the Eleventh Annual Meeting of the [IEEE Lasers and Electro-Optics Society] (LEOS 98), Orlando, Fla., 3–4 December 1998.

P. Guenter and J. Huignard, Photorefractive Materials and Their Applications 1 - Fundamental Phenomena (Springer, Berlin, 1988).
[Crossref]

D. Nolte, Photorefractive effects and materials (Kluwer Acad. Publ., Boston, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up: La: He-Ne-laser, I: intensity filter, P: Glan-Thompson-polarizer, O: micro-objective, K: crystal, L: telescope system, C: CCD-matrix.

Fig. 2.
Fig. 2.

Dependence of the crystals transmission on the wavelength.

Fig. 3.
Fig. 3.

Comparison of self-focusing in nominal pure, Rh and Co doped crystals. The beam diameter w at the rear face of the crystal is normalized at the output diameter w at the beginning of the measurement.

Fig. 4.
Fig. 4.

Comparison of self-focusing in 0° and 45°cut crystals of undoped barium titanate. The beam diameter w at the rear face of the crystal is normalized at the output diameter w at the beginning of the measurement.

Fig. 5.
Fig. 5.

Direction of polarizations of the laser beam and edge length of the crystal that was used in experiment.

Fig. 6.
Fig. 6.

Beam diameter at

Tables (1)

Tables Icon

Table 1. Samples (1–19) of the barium titanate crystals with edge lengths a/b/c, color, absorption coefficients α at 633nm, doping and cut

Metrics