Abstract

We report that negative refraction can be achieved through surface waves on a metal surface with an array of drilled holes. Using a rigorous full-vectorial three-dimensional finite-difference time-domain method, we also demonstrate the sub-wavelength imaging of a point dipole source by a slab of such a structure.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
    [CrossRef] [PubMed]
  4. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
    [CrossRef]
  5. C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
    [CrossRef]
  6. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and S. C. M., "Negative refraction by photonic crystals," Nature 423, 604-605 (2003)
    [CrossRef] [PubMed]
  7. . P. V. Parimi, W. T. Lu, P. Vodo, and S. Shridar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
    [CrossRef] [PubMed]
  8. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
    [CrossRef] [PubMed]
  9. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef] [PubMed]
  10. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
    [CrossRef]
  11. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
    [CrossRef]
  12. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83, 2845 (1999).
    [CrossRef]
  13. W. L. Barnes, W. A. Murray, J. Dintiinger, E. Devaux, and T.W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  14. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching Surface Plasmons with Structured Surface," Science 305, 847-848 (2004).
    [CrossRef] [PubMed]
  15. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005).
    [CrossRef]
  16. A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005).
    [CrossRef] [PubMed]
  17. M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583 (2005).
    [CrossRef] [PubMed]
  18. F. J. Garćıa de Abajo and J. J. Sáenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).
    [CrossRef]
  19. M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
    [CrossRef]
  20. F. J. Garćıa de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express 14, 7-18 (2006)
    [CrossRef] [PubMed]
  21. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House INC, Norwood, 2000).
  22. Z. Y. Li and L. L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phy. Rev. B 68, 245110 (2003).
    [CrossRef]
  23. S. He, Z. C. Ruan, L. Chen, and J. Q. Shen, "Focusing properties of a photonic crystal slab with negative refraction," Phys. Rev. B 70, 115113 (2004).
    [CrossRef]
  24. J. P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127, 363-379 (1996).
    [CrossRef]
  25. H. Shin and S. Fan, "All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure," Phys. Rev. Lett. 96,073907 (2006).
    [CrossRef] [PubMed]
  26. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).
  27. S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
    [CrossRef]

2006 (1)

H. Shin and S. Fan, "All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure," Phys. Rev. Lett. 96,073907 (2006).
[CrossRef] [PubMed]

2005 (5)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005).
[CrossRef] [PubMed]

M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583 (2005).
[CrossRef] [PubMed]

F. J. Garćıa de Abajo and J. J. Sáenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
[CrossRef]

2004 (5)

W. L. Barnes, W. A. Murray, J. Dintiinger, E. Devaux, and T.W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching Surface Plasmons with Structured Surface," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

S. He, Z. C. Ruan, L. Chen, and J. Q. Shen, "Focusing properties of a photonic crystal slab with negative refraction," Phys. Rev. B 70, 115113 (2004).
[CrossRef]

2003 (3)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

. P. V. Parimi, W. T. Lu, P. Vodo, and S. Shridar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Z. Y. Li and L. L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phy. Rev. B 68, 245110 (2003).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

2000 (2)

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
[CrossRef]

1996 (1)

J. P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127, 363-379 (1996).
[CrossRef]

1968 (1)

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Anand, S.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintiinger, E. Devaux, and T.W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Berenger, J. P.

J. P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127, 363-379 (1996).
[CrossRef]

Berrier, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Beruete, M.

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).

Bravo-Abad, J.

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
[CrossRef]

Campillo, I.

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
[CrossRef]

Chen, L.

S. He, Z. C. Ruan, L. Chen, and J. Q. Shen, "Focusing properties of a photonic crystal slab with negative refraction," Phys. Rev. B 70, 115113 (2004).
[CrossRef]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintiinger, E. Devaux, and T.W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dintiinger, J.

W. L. Barnes, W. A. Murray, J. Dintiinger, E. Devaux, and T.W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dolado, J.

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
[CrossRef]

Ebbesen, T. W.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Ebbesen, T.W.

W. L. Barnes, W. A. Murray, J. Dintiinger, E. Devaux, and T.W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005).
[CrossRef] [PubMed]

Fan, S.

H. Shin and S. Fan, "All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure," Phys. Rev. Lett. 96,073907 (2006).
[CrossRef] [PubMed]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

F. J. Garćıa de Abajo and J. J. Sáenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching Surface Plasmons with Structured Surface," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Ghaemi, H.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
[CrossRef]

He, S.

S. He, Z. C. Ruan, L. Chen, and J. Q. Shen, "Focusing properties of a photonic crystal slab with negative refraction," Phys. Rev. B 70, 115113 (2004).
[CrossRef]

He, S. L.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

Hibbins, A. P.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Li, Z. Y.

Z. Y. Li and L. L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phy. Rev. B 68, 245110 (2003).
[CrossRef]

Lin, L. L.

Z. Y. Li and L. L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phy. Rev. B 68, 245110 (2003).
[CrossRef]

Lu, W. T.

. P. V. Parimi, W. T. Lu, P. Vodo, and S. Shridar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Martin-Moreno, L.

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching Surface Plasmons with Structured Surface," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

Mulot, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintiinger, E. Devaux, and T.W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

Ozbay, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Parimi, P. V.

. P. V. Parimi, W. T. Lu, P. Vodo, and S. Shridar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching Surface Plasmons with Structured Surface," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

Qiu, M.

M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Express 13, 7583 (2005).
[CrossRef] [PubMed]

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Ruan, Z. C.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

S. He, Z. C. Ruan, L. Chen, and J. Q. Shen, "Focusing properties of a photonic crystal slab with negative refraction," Phys. Rev. B 70, 115113 (2004).
[CrossRef]

Sáenz, J. J.

F. J. Garćıa de Abajo and J. J. Sáenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

Sambles, J. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Shen, J. Q.

S. He, Z. C. Ruan, L. Chen, and J. Q. Shen, "Focusing properties of a photonic crystal slab with negative refraction," Phys. Rev. B 70, 115113 (2004).
[CrossRef]

Shin, H.

H. Shin and S. Fan, "All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure," Phys. Rev. Lett. 96,073907 (2006).
[CrossRef] [PubMed]

Shridar, S.

. P. V. Parimi, W. T. Lu, P. Vodo, and S. Shridar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Sorolla, M.

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
[CrossRef]

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Swillo, M.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House INC, Norwood, 2000).

Talneau, A.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
[CrossRef]

Thyl´en, L.

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

Veselago, V. G.

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Vodo, P.

. P. V. Parimi, W. T. Lu, P. Vodo, and S. Shridar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Xiao, S. S.

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, "Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves," J. Comput. Phys. 127, 363-379 (1996).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, "Surfaces with holes in them: new plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, S97-S101 (2005).
[CrossRef]

Nature (2)

. P. V. Parimi, W. T. Lu, P. Vodo, and S. Shridar, "Imaging by flat lens using negative refraction," Nature 426, 404 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667 (1998).
[CrossRef]

Opt. Express (1)

Phy. Rev. B (1)

Z. Y. Li and L. L. Lin, "Evaluation of lensing in photonic crystal slabs exhibiting negative refraction," Phy. Rev. B 68, 245110 (2003).
[CrossRef]

Phys. Rev. B (3)

S. He, Z. C. Ruan, L. Chen, and J. Q. Shen, "Focusing properties of a photonic crystal slab with negative refraction," Phys. Rev. B 70, 115113 (2004).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779 (1998).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696-10705 (2000).
[CrossRef]

Phys. Rev. Lett. (7)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83, 2845 (1999).
[CrossRef]

W. L. Barnes, W. A. Murray, J. Dintiinger, E. Devaux, and T.W. Ebbesen, "Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

F. J. Garćıa de Abajo and J. J. Sáenz, "Electromagnetic Surface Modes in Structured Perfect-Conductor Surfaces," Phys. Rev. Lett. 95, 233901 (2005).
[CrossRef]

A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thyl´en, A. Talneau, and S. Anand, "Negative Refraction at Infrared Wavelengths in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 93, 073902 (2004).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens," Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

H. Shin and S. Fan, "All-Angle Negative Refraction for Surface Plasmon Waves Using a Metal-Dielectric-Metal Structure," Phys. Rev. Lett. 96,073907 (2006).
[CrossRef] [PubMed]

Propag. (1)

M. Beruete, M. Sorolla, I. Campillo, J. Dolado, L. Martin-Moreno, J. Bravo-Abad, and F. J. Garcia-Vidal, "Enhanced millimeter-wave transmission through subwavelength hole arrays," IEEE Trans. on Antennas.Propag. 53, 1897 (2005).
[CrossRef]

Science (3)

A. P. Hibbins, B. R. Evans, and J. R. Sambles, "Experimental Verification of Designer Surface Plasmons," Science 308, 670-672 (2005).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimiching Surface Plasmons with Structured Surface," Science 305, 847-848 (2004).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Other (5)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999).

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104(R) (2002).
[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and S. C. M., "Negative refraction by photonic crystals," Nature 423, 604-605 (2003)
[CrossRef] [PubMed]

F. J. Garćıa de Abajo, J. J. Sáenz, I. Campillo, and J. S. Dolado, "Site and lattice resonances in metallic hole arrays," Opt. Express 14, 7-18 (2006)
[CrossRef] [PubMed]

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House INC, Norwood, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The schematic of a structured perfect conductor surface, with a square array of square holes. A dielectric material, dielectric constant εh , fills the holes and covers the top surface of the structure. The lattice constant is d, and the width of the holes is a.

Fig. 2.
Fig. 2.

(a) The dispersion surface of the first surface wave band in the DSP-structure with εh =8 and a=0.85d. (b) The equal-frequency contours and the wave-propagation diagrams at ω=0.171(2πc/d).

Fig. 3.
Fig. 3.

The snapshots of the Ez field at the frequency ω=0.171(2πc/d) for three different z positions: 1.0d, 1.6d, and 2.75d. The slab has a thickness of 5.2d and the depth of the holes is h=1.0d. The plane of the metal surface is at z=1.5d. The black lines in the each layer give the boundary of the slab structure and the outline of the metal. The inset shows the ray-tracing analysis for focused imaging by a slab lens with the negative refraction.

Fig. 4.
Fig. 4.

The snapshots of the Ez field along the plane across the source and the image for (a) the DSP-structure and (b) the unpatterned metal structure (just covered with the dielectric ε=8 but without the drilled holes array). The black line gives the outline of metal. The two dash lines give the boundary between the slab and air.

Fig. 5.
Fig. 5.

The average field intensity at the imaging distance Si =0.6d, both for the DSP-structure (the solid line) and the metal structure without holes (the dashed line).

Metrics