Abstract

Flat and spherical PMMA surfaces were ablated with a standard refractive surgery laser system. The ratio of profiles on flat to spherical PMMA surfaces was used to estimate experimentally the radial change in ablation efficiency for PMMA and cornea. Changes in ablation efficiency accounted for most of the asphericity increase found clinically, using the same laser system. This protocol is useful to obtain a correction factor for any ablation algorithm and laser system, and to estimate the contribution of biomechanics to the increase of corneal asphericity in myopic refractive surgery.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, and A. Georgiadis, "Laser in situ keratomileusis," Lasers. Surg. Med. 10, 463-468 (1990).
    [CrossRef] [PubMed]
  2. M. Mrochen, M. Kaemmerer, and T. Seiler. "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes," J. Refract. Surg. 16, 116-121 (2000).
    [PubMed]
  3. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
    [PubMed]
  4. S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberrations," Invest. Ophthalmol. Vis. Sci. 42,3349-3356 (2001).
    [PubMed]
  5. J. T. Holladay, D. R. Dudeja, and J. Chang, "Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography," J. Cataract. Refract. Surg.,  25(5), 663-669 (1999).
    [CrossRef]
  6. L. Llorente, S. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia," J. Refract. Surg.,  20, 203-216 (2004).
    [PubMed]
  7. C. Munnerlyn, S. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
    [PubMed]
  8. D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
    [PubMed]
  9. J. Jiménez, R. Anera, and L. Jiménez del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19(1), 65-69 (2003).
  10. S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).
  11. M. Mrochen, T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, 584-587 (2001).
  12. J. Jiménez, R. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81(8), 1521-1523 (2002).
    [CrossRef]
  13. R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
    [CrossRef] [PubMed]
  14. D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
    [CrossRef]
  15. C. Roberts, and W. Dupps, "Corneal biomechanics and their role in corneal ablative procedures," in Customized corneal ablation: The quest for super vision, S. McRae, R. Krueger, and R. Applegate, eds. (Stack Publishing, 2001).
  16. J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
    [PubMed]
  17. C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).
  18. A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
    [CrossRef] [PubMed]
  19. S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surg. 17,596-601 (2001).
  20. G. Pettit and M. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996).
    [CrossRef] [PubMed]
  21. M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999).
    [PubMed]
  22. R. Srinivasan, "Ablation of polymers and biological tissue by ultraviolet lasers," Science,  234, 559-565 (1986).
    [CrossRef] [PubMed]
  23. G. Pettit, "Practical issues of wavefront-guided refractive surgery," FIO/LS Conference Program 118, (2005).
  24. J. R. Jimenez, R. G. Anera, J. A. Diaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
    [CrossRef]
  25. B. T. Fisher and D. W. Hahn, "Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation," Appl. Opt. 43, 5443-5451 (2004).
    [CrossRef] [PubMed]
  26. F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 610-614 (2002).
  27. S. Marcos, D. Cano, and C. Dorronsoro, "A method of preventing the induction of aberrations in laser refractive surgery systems," Patent WO 2005/122873 A1. (2005), http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2005122873.
  28. D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
    [CrossRef] [PubMed]
  29. A. I. Caster, J. L. Hoff, and R. Ruiz, "Conventional vs wavefront-guided LASIK using the LADARVision4000 excimer laser," J. Refract. Surg. 21, 786-791 (2005).
  30. C. Roberts "The cornea is not a piece of plastic," J. Refract. Surg. 16, 407-413 (2000).
    [PubMed]

2005

A. I. Caster, J. L. Hoff, and R. Ruiz, "Conventional vs wavefront-guided LASIK using the LADARVision4000 excimer laser," J. Refract. Surg. 21, 786-791 (2005).

2004

J. R. Jimenez, R. G. Anera, J. A. Diaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
[CrossRef]

B. T. Fisher and D. W. Hahn, "Measurement of small-signal absorption coefficient and absorption cross section of collagen for 193-nm excimer laser light and the role of collagen in tissue ablation," Appl. Opt. 43, 5443-5451 (2004).
[CrossRef] [PubMed]

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia," J. Refract. Surg.,  20, 203-216 (2004).
[PubMed]

D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

2003

J. Jiménez, R. Anera, and L. Jiménez del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19(1), 65-69 (2003).

S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
[CrossRef] [PubMed]

2002

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 610-614 (2002).

J. Jiménez, R. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81(8), 1521-1523 (2002).
[CrossRef]

2001

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surg. 17,596-601 (2001).

M. Mrochen, T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, 584-587 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberrations," Invest. Ophthalmol. Vis. Sci. 42,3349-3356 (2001).
[PubMed]

2000

M. Mrochen, M. Kaemmerer, and T. Seiler. "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

C. Roberts "The cornea is not a piece of plastic," J. Refract. Surg. 16, 407-413 (2000).
[PubMed]

1999

J. T. Holladay, D. R. Dudeja, and J. Chang, "Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography," J. Cataract. Refract. Surg.,  25(5), 663-669 (1999).
[CrossRef]

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999).
[PubMed]

1996

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

G. Pettit and M. Ediger, "Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation," Appl. Opt. 35, 3386-3391 (1996).
[CrossRef] [PubMed]

1990

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, and A. Georgiadis, "Laser in situ keratomileusis," Lasers. Surg. Med. 10, 463-468 (1990).
[CrossRef] [PubMed]

1988

C. Munnerlyn, S. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

1986

R. Srinivasan, "Ablation of polymers and biological tissue by ultraviolet lasers," Science,  234, 559-565 (1986).
[CrossRef] [PubMed]

Aizawa, D.

D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
[CrossRef] [PubMed]

Andrews, J.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999).
[PubMed]

Anera, R.

J. Jiménez, R. Anera, and L. Jiménez del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19(1), 65-69 (2003).

R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

J. Jiménez, R. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81(8), 1521-1523 (2002).
[CrossRef]

Anera, R. G.

Azar, D.

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

Azar, D. T.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Barbero, S.

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia," J. Refract. Surg.,  20, 203-216 (2004).
[PubMed]

D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberrations," Invest. Ophthalmol. Vis. Sci. 42,3349-3356 (2001).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

Berns, M. W.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999).
[PubMed]

Cambier, J. L.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Cano, D.

D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

Caster, A. I.

A. I. Caster, J. L. Hoff, and R. Ruiz, "Conventional vs wavefront-guided LASIK using the LADARVision4000 excimer laser," J. Refract. Surg. 21, 786-791 (2005).

Chang, J.

J. T. Holladay, D. R. Dudeja, and J. Chang, "Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography," J. Cataract. Refract. Surg.,  25(5), 663-669 (1999).
[CrossRef]

Chao, L.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999).
[PubMed]

Diaz, J. A.

Dudeja, D. R.

J. T. Holladay, D. R. Dudeja, and J. Chang, "Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography," J. Cataract. Refract. Surg.,  25(5), 663-669 (1999).
[CrossRef]

Ediger, M.

Ferreri, G.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

Ferreri, P.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

Fisher, B. T.

Frenschock, O.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, and A. Georgiadis, "Laser in situ keratomileusis," Lasers. Surg. Med. 10, 463-468 (1990).
[CrossRef] [PubMed]

Gatinel, D.

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

Georgiadis, A.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, and A. Georgiadis, "Laser in situ keratomileusis," Lasers. Surg. Med. 10, 463-468 (1990).
[CrossRef] [PubMed]

Giebel, A. W.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999).
[PubMed]

Gottsch, J. D.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Hahn, D. W.

Hall, D.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Hita, E.

R. Anera, J. Jimenez, L. Jimenez del Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

J. Jiménez, R. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81(8), 1521-1523 (2002).
[CrossRef]

Hoang-Xuan, T.

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

Hoff, J. L.

A. I. Caster, J. L. Hoff, and R. Ruiz, "Conventional vs wavefront-guided LASIK using the LADARVision4000 excimer laser," J. Refract. Surg. 21, 786-791 (2005).

Holladay, J. T.

J. T. Holladay, D. R. Dudeja, and J. Chang, "Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography," J. Cataract. Refract. Surg.,  25(5), 663-669 (1999).
[CrossRef]

Ito, M.

D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
[CrossRef] [PubMed]

Jimenez, J.

Jimenez, J. R.

Jiménez, J.

J. Jiménez, R. Anera, and L. Jiménez del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19(1), 65-69 (2003).

J. Jiménez, R. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81(8), 1521-1523 (2002).
[CrossRef]

Jimenez del Barco, L.

Jiménez del Barco, L.

J. Jiménez, R. Anera, and L. Jiménez del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19(1), 65-69 (2003).

J. Jiménez, R. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81(8), 1521-1523 (2002).
[CrossRef]

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, and T. Seiler. "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

Kemner, J.

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

Kirsch, M.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

Kittelmann, O.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

Komatsu, M.

D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
[CrossRef] [PubMed]

Koons, S.

C. Munnerlyn, S. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

Korn, G.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

Lenzner, M.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

Liaw, L. H.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999).
[PubMed]

Llorente, L.

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia," J. Refract. Surg.,  20, 203-216 (2004).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberrations," Invest. Ophthalmol. Vis. Sci. 42,3349-3356 (2001).
[PubMed]

Manns, F.

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 610-614 (2002).

Marcos, S.

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia," J. Refract. Surg.,  20, 203-216 (2004).
[PubMed]

D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberrations," Invest. Ophthalmol. Vis. Sci. 42,3349-3356 (2001).
[PubMed]

S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surg. 17,596-601 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

Marshall, J.

C. Munnerlyn, S. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

Merayo, J.

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia," J. Refract. Surg.,  20, 203-216 (2004).
[PubMed]

Merayo-Lloves, J.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberrations," Invest. Ophthalmol. Vis. Sci. 42,3349-3356 (2001).
[PubMed]

Milne, P.

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 610-614 (2002).

Moreno-Barriuso, E.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

Mrochen, M.

M. Mrochen, T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, 584-587 (2001).

M. Mrochen, M. Kaemmerer, and T. Seiler. "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

Munnerlyn, C.

C. Munnerlyn, S. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

Navarro, R.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

Odonnell, C. B.

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

Odonnell, F. E.

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

Ohno, K.

D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
[CrossRef] [PubMed]

Pallikaris, I.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, and A. Georgiadis, "Laser in situ keratomileusis," Lasers. Surg. Med. 10, 463-468 (1990).
[CrossRef] [PubMed]

Papatzanaki, M.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, and A. Georgiadis, "Laser in situ keratomileusis," Lasers. Surg. Med. 10, 463-468 (1990).
[CrossRef] [PubMed]

Parel, J. M.

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 610-614 (2002).

Perez-Ocon, F.

Pettit, G.

Rencs, E. V.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Roberts, C.

C. Roberts "The cornea is not a piece of plastic," J. Refract. Surg. 16, 407-413 (2000).
[PubMed]

Roszkowska, A. M.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

Ruiz, R.

A. I. Caster, J. L. Hoff, and R. Ruiz, "Conventional vs wavefront-guided LASIK using the LADARVision4000 excimer laser," J. Refract. Surg. 21, 786-791 (2005).

Seiler, T.

M. Mrochen, T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, 584-587 (2001).

M. Mrochen, M. Kaemmerer, and T. Seiler. "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

Shimizu, K.

D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
[CrossRef] [PubMed]

Srinivasan, R.

R. Srinivasan, "Ablation of polymers and biological tissue by ultraviolet lasers," Science,  234, 559-565 (1986).
[CrossRef] [PubMed]

Stark, W. J.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

Stathi, E.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, and A. Georgiadis, "Laser in situ keratomileusis," Lasers. Surg. Med. 10, 463-468 (1990).
[CrossRef] [PubMed]

Suzuki, M.

D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
[CrossRef] [PubMed]

Uozato, H.

D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
[CrossRef] [PubMed]

VerSteeg, B.

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999).
[PubMed]

Zatonski, R.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

J. Jiménez, R. Anera, L. Jiménez del Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81(8), 1521-1523 (2002).
[CrossRef]

Invest. Ophthalmol. Vis. Sci.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with Laser Ray Tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberrations," Invest. Ophthalmol. Vis. Sci. 42,3349-3356 (2001).
[PubMed]

D. Gatinel, T. Hoang-Xuan, and D. Azar, "Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model," Invest. Ophthalmol. Vis. Sci. 42, 1736-1742 (2001).
[PubMed]

M. W. Berns, L. Chao, A. W. Giebel, L. H. Liaw, J. Andrews and B. VerSteeg, "Human corneal ablation threshold using the 193-nm ArF excimer laser," Invest. Ophthalmol. Vis. Sci. 40, 826-830 (1999).
[PubMed]

J. Cataract Refract. Surg.

A. M. Roszkowska, G. Korn, M. Lenzner, M. Kirsch, O. Kittelmann, R. Zatonski, P. Ferreri and G. Ferreri, "Experimental and clinical investigation of efficiency and ablation profiles of new solid-state deep-ultraviolet laser for vision correction," J. Cataract Refract. Surg. 30, 2536-2542 (2004).
[CrossRef] [PubMed]

D. Aizawa, K. Shimizu, M. Komatsu, M. Ito, M. Suzuki, K. Ohno and H. Uozato, "Clinical outcomes of wavefront-guided laser in situ keratomileusis: 6-month follow-up," J. Cataract Refract. Surg. 29, 1507-1513 (2003).
[CrossRef] [PubMed]

J. Cataract. Refract. Surg.

C. Munnerlyn, S. Koons, and J. Marshall, "Photorefractive keratectomy: a technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

J. T. Holladay, D. R. Dudeja, and J. Chang, "Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography," J. Cataract. Refract. Surg.,  25(5), 663-669 (1999).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. A.

D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A. 21, 926-936 (2004).
[CrossRef]

J. Refract. Surg.

J. D. Gottsch, E. V. Rencs, J. L. Cambier, D. Hall, D. T. Azar and W. J. Stark, "Excimer laser calibration system," J. Refract. Surg. 12, 401-411 (1996).
[PubMed]

C. B. Odonnell, J. Kemner, and F. E. Odonnell, "Surface roughness in PMMA is linearly related to the amount of excimer laser ablation," J. Refract. Surg. 12, 171-174 (1996).

M. Mrochen, M. Kaemmerer, and T. Seiler. "Wavefront-guided Laser in situ Keratomileusis: Early results in three eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

L. Llorente, S. Barbero, J. Merayo, and S. Marcos, "Changes in corneal and total aberrations induced by LASIK surgery for hyperopia," J. Refract. Surg.,  20, 203-216 (2004).
[PubMed]

J. Jiménez, R. Anera, and L. Jiménez del Barco, "Equation for corneal asphericity after corneal refractive surgery," J. Refract. Surg. 19(1), 65-69 (2003).

S. Marcos, D. Cano, and S. Barbero, "The increase of corneal asphericity after standard myopic LASIK surgery is not inherent to the Munnerlyn algorithm," J. Refract. Surg. 19, 592-596 (2003).

M. Mrochen, T. Seiler, "Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery," J. Refract. Surg. 17, 584-587 (2001).

S. Marcos, "Aberrations and Visual Performance following standard laser vision correction," J. Refract. Surg. 17,596-601 (2001).

A. I. Caster, J. L. Hoff, and R. Ruiz, "Conventional vs wavefront-guided LASIK using the LADARVision4000 excimer laser," J. Refract. Surg. 21, 786-791 (2005).

C. Roberts "The cornea is not a piece of plastic," J. Refract. Surg. 16, 407-413 (2000).
[PubMed]

F. Manns, P. Milne, and J. M. Parel, "Ultraviolet corneal photoablation," J. Refract. Surg. 18, 610-614 (2002).

Lasers. Surg. Med.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, and A. Georgiadis, "Laser in situ keratomileusis," Lasers. Surg. Med. 10, 463-468 (1990).
[CrossRef] [PubMed]

Opt. Lett.

Science

R. Srinivasan, "Ablation of polymers and biological tissue by ultraviolet lasers," Science,  234, 559-565 (1986).
[CrossRef] [PubMed]

Other

G. Pettit, "Practical issues of wavefront-guided refractive surgery," FIO/LS Conference Program 118, (2005).

S. Marcos, D. Cano, and C. Dorronsoro, "A method of preventing the induction of aberrations in laser refractive surgery systems," Patent WO 2005/122873 A1. (2005), http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=WO2005122873.

C. Roberts, and W. Dupps, "Corneal biomechanics and their role in corneal ablative procedures," in Customized corneal ablation: The quest for super vision, S. McRae, R. Krueger, and R. Applegate, eds. (Stack Publishing, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a). Central ablation depths in flat – for two perpendicular meridians- (crosses) and spherical surfaces (solid circles). PMMA ablation depth was obtained from contact profilometry on flat surfaces, and videokeratography on spherical surfaces. Corneal ablation depth as provided by the laser system, for a given refraction correction and optical zone. The solid line represents the best-fitting line (slope=0.55). (B) Refractive correction achieved on the spherical PMMA surfaces versus the intended correction on the cornea, as provided by the laser system. The solid line represents the best-fitting line (slope=0.71).

Fig. 2.
Fig. 2.

Ablation profiles of three PMMA ablated flat surfaces for three nominal refractive myopic corrections (3, 6 and 12 D). Optical zone diameters were 7 mm for the 3-D and 6-D corrections and 5 mm for 12 D. These patterns were obtained by profilometry on ablated flat surfaces. These ablation patterns are not affected by ablation efficiency changes and represent the actual patterns for the cornea programmed into the laser system.

Fig. 3.
Fig. 3.

Best fitting conic of the actual corneal ablation pattern -crosses- corresponding to the 12-D PMMA ablation pattern of Fig. 2, compared with the theoretical Munnerlyn and parabolic patterns -solid line- for the same correction and depth. The Munnerlyn pattern is calculated with the parameters of a typical preoperative cornea (radius 7.8 mm and asphericity -0.2).

Fig. 4.
Fig. 4.

Ablation profiles of two ablated PMMA spherical surfaces (3D:black dots, and 6D: gray dots), obtained by subtracting post-ablation elevation maps from the elevation maps of the spheres. This ablation patterns are affected by ablation efficiency changes across the curved surface. Outside the ablation the topographer has systematic errors, which are partially compensated after processing.

Fig. 5.
Fig. 5.

Measurements of the ablation profile on PMMA from a spherical surface -upper curve-and a flat surface -lower curve- after myopic refractive surgery of 12 D. Although the optical zones are different, inside the central 5mm -vertical lines- the only expected difference among both measurements is due to laser efficiency losses. This produces a shallower ablation in the periphery of ablated spherical surfaces.

Fig. 6.
Fig. 6.

Ablation efficiency factors obtained experimentally (black) for PMMA and cornea, compared with theoretical predictions using Jiménez et al’s equations [12] for PMMA and cornea respectively. Data for PMMA are represented in thick lines and for the cornea in thin lines.

Fig. 7.
Fig. 7.

Postoperative corneal asphericities of ablated PMMA surfaces as a function of nominal (on cornea) refractive correction, as measured directly on ablated spherical surfaces -open circles-. The figure also shows the predicted asphericity after direct subtraction of the experimental pattern measured on flat surfaces (non affected by efficiency factor) -open diamonds- as well as subtraction of this pattern multiplied by the experimental -solid diamonds- and theoretical -crosses- efficiency factors for PMMA. Pre-operative spherical surfaces had radii of curvature of 8-mm.

Fig. 8.
Fig. 8.

Asphericities of simulated post-operative corneas (central radii 7.8 mm, asphericity -0.2) as a function of nominal correction, in comparison with clinical data (triangles) on real patients operated with the same laser system. Predictions include asphericities obtained from postoperative corneas after subtracting the corneal ablation pattern obtained from flat PMMA, i.e. with no efficiency effects (open diamonds), as well as this pattern multiplied by the experimental (solid diamonds) and the theoretical efficiency factor (crosses). Two different experimental efficiency factors (considering two different corneal ablation thresholds) were used, for Fth, cornea=40 (black) and with Fth, cornea=60 (gray).

Fig. 9.
Fig. 9.

Wave aberration maps (for 3rd and higher order aberrations) for a patient before LASIK (-5 D pre-operative spherical error, contour lines stand for 1 micron aberration steps) (A), and the wave aberration after simulation of wavefront guided refractive surgery, not including the ablation efficiency correction factor (B), and including it (C). Biomechanical factors are not considered. Correction of ablation efficiency avoids induction of spherical aberration.

Tables (2)

Tables Icon

Table 1. Description of the ten refractive surgery ablations performed onto flat PMMA surfaces

Tables Icon

Table 2. Description of the seven refractive surgery ablations performed onto spherical PMMA surfacesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

K = 1 + a · f ( R )
K cornea ( α ) = 1 + ( a cornea a PMMA ) · ( K PMMA ( α ) 1 )

Metrics