Abstract

It is well known that beam distortions in a laser cavity can deteriorate the laser’s beam quality, but why and exactly how the impact of such distortions can strongly depend on details of the resonator setup has not been studied in detail. This article clarifies the issue with a simple resonant mode coupling model, explaining e.g. why strong beam quality deterioration is often observed near certain (but not all) resonator frequency degeneracies, while a resonator can be very tolerant to distortions in other cases. These findings lead to important conclusions, including practical guidelines for optimizing laser beam quality via cavity design.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, "New developments in laser resonators," Proc. SPIE 1224, 2-14 (1990).
    [CrossRef]
  2. T. Kimura, K. Otsuka, and M. Saruwatari, "Spatial hole-burning effects in a Nd3+:YAG laser," IEEE J. Quantum Electron. 7, 225-230 (1971).
    [CrossRef]
  3. Q. Zhang, B. Ozygus, and H. Weber, "Degeneration effects in laser cavities," Eur. Phys. J. AP 6, 293-298 (1999).
    [CrossRef]
  4. A. E. Siegman, "Effects of small-scale phase perturbations on laser oscillator beam quality," IEEE J. Quantum Electron. 13, 334-337 (1977).
    [CrossRef]
  5. T. Klaassen, J. de Jong, M. van Exter, and J. P. Woerdman, "Transverse mode coupling in an optical resonator," Opt. Lett. 30, 1959-1961 (2005).
    [CrossRef] [PubMed]
  6. V. Magni, "Multielement stable resonators containing a variable lens," J. Opt. Soc. Am. A 4, 1962-1969 (1987).
    [CrossRef]

2005

1999

Q. Zhang, B. Ozygus, and H. Weber, "Degeneration effects in laser cavities," Eur. Phys. J. AP 6, 293-298 (1999).
[CrossRef]

1990

A. E. Siegman, "New developments in laser resonators," Proc. SPIE 1224, 2-14 (1990).
[CrossRef]

1987

1977

A. E. Siegman, "Effects of small-scale phase perturbations on laser oscillator beam quality," IEEE J. Quantum Electron. 13, 334-337 (1977).
[CrossRef]

1971

T. Kimura, K. Otsuka, and M. Saruwatari, "Spatial hole-burning effects in a Nd3+:YAG laser," IEEE J. Quantum Electron. 7, 225-230 (1971).
[CrossRef]

de Jong, J.

Kimura, T.

T. Kimura, K. Otsuka, and M. Saruwatari, "Spatial hole-burning effects in a Nd3+:YAG laser," IEEE J. Quantum Electron. 7, 225-230 (1971).
[CrossRef]

Klaassen, T.

Magni, V.

Otsuka, K.

T. Kimura, K. Otsuka, and M. Saruwatari, "Spatial hole-burning effects in a Nd3+:YAG laser," IEEE J. Quantum Electron. 7, 225-230 (1971).
[CrossRef]

Ozygus, B.

Q. Zhang, B. Ozygus, and H. Weber, "Degeneration effects in laser cavities," Eur. Phys. J. AP 6, 293-298 (1999).
[CrossRef]

Saruwatari, M.

T. Kimura, K. Otsuka, and M. Saruwatari, "Spatial hole-burning effects in a Nd3+:YAG laser," IEEE J. Quantum Electron. 7, 225-230 (1971).
[CrossRef]

Siegman, A. E.

A. E. Siegman, "New developments in laser resonators," Proc. SPIE 1224, 2-14 (1990).
[CrossRef]

A. E. Siegman, "Effects of small-scale phase perturbations on laser oscillator beam quality," IEEE J. Quantum Electron. 13, 334-337 (1977).
[CrossRef]

van Exter, M.

Weber, H.

Q. Zhang, B. Ozygus, and H. Weber, "Degeneration effects in laser cavities," Eur. Phys. J. AP 6, 293-298 (1999).
[CrossRef]

Woerdman, J. P.

Zhang, Q.

Q. Zhang, B. Ozygus, and H. Weber, "Degeneration effects in laser cavities," Eur. Phys. J. AP 6, 293-298 (1999).
[CrossRef]

Eur. Phys. J. AP

Q. Zhang, B. Ozygus, and H. Weber, "Degeneration effects in laser cavities," Eur. Phys. J. AP 6, 293-298 (1999).
[CrossRef]

IEEE J. Quantum Electron.

A. E. Siegman, "Effects of small-scale phase perturbations on laser oscillator beam quality," IEEE J. Quantum Electron. 13, 334-337 (1977).
[CrossRef]

T. Kimura, K. Otsuka, and M. Saruwatari, "Spatial hole-burning effects in a Nd3+:YAG laser," IEEE J. Quantum Electron. 7, 225-230 (1971).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Proc. SPIE

A. E. Siegman, "New developments in laser resonators," Proc. SPIE 1224, 2-14 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Solid lines: relative frequencies of the eigenmodes (with respect to those of the unperturbed fundamental mode, in units of the longitudinal mode spacing) versus the difference Δ of round-trip phase shifts. Dashed lines: relative mode frequencies without mode coupling. The net gain of the higher-order mode is zero, and the coupling strength is C=0.01. (b) Fraction of power in the unperturbed fundamental mode. The two graphs correspond to the two eigenmodes and the colors correspond to those in part a).

Fig. 2.
Fig. 2.

Same as Fig. 1, but with 3% amplitude loss per round trip of the higher-order mode. Both the frequency pulling effects and the power transfer to the higher-order mode are reduced.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( a 0 a 1 ) = ( 1 0 0 A e i Δ ) ( 1 C 2 C * C 1 C 2 ) ( a 0 a 1 ) = ( 1 C 2 C * A e i Δ C A e i Δ 1 C 2 ) ( a 0 a 1 )
E ( x , y ) = n = 0 c n E n ( x , y )
c n = E n * ( x , y ) E ( x , y ) d A .
c n = m = 0 a nm c m
a nm = E n * ( x , y ) t ( x , y ) E m ( x , y ) d A .

Metrics