Abstract

We demonstrate a 158 fs 5.3 nJ mode-locked laser system based on a fiber oscillator, fiber amplifier and fiber compressor. Dispersion compensation in the fiber oscillator was obtained with a solid-core photonic bandgap (SC-PBG) fiber spliced to standard fibers, and external compression is obtained with a hollow-core photonic bandgap (HC-PBG) fiber.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. O. Ilday, H. Lim, J. R. Buckley, and F. W. Wise, "Practical all-fiber source of high-power, 120-fs pulses at 1 mu m," Opt. Lett. 28, 1362-1364 (2003).
    [CrossRef] [PubMed]
  2. T. Schreiber, C. K. Nielsen, B. Orta, J. Limpert, and A. Tünnermann, "μJ-Level all-polarization-maintaining femtosecond fiber source," Opt. Lett. 31, 574-576 (2006).
    [CrossRef] [PubMed]
  3. C. K. Nielsen, B. Ortac¸, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. T¨unnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
    [CrossRef] [PubMed]
  4. M. Hofer,M. H. Ober, R. Hofer,M. E. Fermann, G. Sucha, D. Harter, K. Sugden, I. Bennion, C. A. C. Mendonca, and T. H. Chiu, "High-power neodymium soliton fiber laser that uses a chirped fiber grating", Opt. Lett. 20, 1701-1703 (1995).
    [CrossRef] [PubMed]
  5. I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," CLEO, Baltimore, paper CThG1, May 2005.
  6. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  7. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, P. St. J. Russel, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-313 (2005).
    [CrossRef] [PubMed]
  8. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, andM. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (¡ 20 dB/km) around 1550 nm)," Opt. Express 13, 8452-8459 (2005).
    [CrossRef] [PubMed]
  9. H. Lim, F. O. Ilday, and F.W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002).
    [PubMed]
  10. H. Lim and F. W. Wise, "Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber," Opt. Express 12, 2231-2235 (2004).
    [CrossRef] [PubMed]
  11. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003).
    [CrossRef] [PubMed]
  12. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hanser, and J. Broeng, "All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003).
    [CrossRef] [PubMed]
  13. A. Isomäki and O. G. Okhotnikov, "All-fiber ytterbium soliton mode-locked laser with dispersion control by solid-core photonic bandgap fiber," Opt. Express 14, 4368-4373 (2006).
    [CrossRef] [PubMed]
  14. J. Jasapara, Tsing Hua Her, R. Bise, R. Windeler, and D. J. DiGiovanni, "Group-velocity dispersion measurements in a photonic bandgap fiber," J. Opt. Soc. Am. B 20, 1611-1614 (2003).
    [CrossRef]
  15. http://www.koheras.com/Menu/Products/Ultra+Wide+Band.
  16. M. Guina, N. Xiang, A. Vainionpää, O. G. Okhotnikov, T. Sajavaara, and J. Keinonen, "Self-starting stretchedpulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers," Opt. Lett. 26, 1809-1811 (2001).
    [CrossRef]
  17. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by highcontrast saturable absorber mirror," IEEE J. Quantum Electon. 40, 893-899 (2004).
    [CrossRef]

2006 (2)

2005 (2)

2004 (2)

H. Lim and F. W. Wise, "Control of dispersion in a femtosecond ytterbium laser by use of hollow-core photonic bandgap fiber," Opt. Express 12, 2231-2235 (2004).
[CrossRef] [PubMed]

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by highcontrast saturable absorber mirror," IEEE J. Quantum Electon. 40, 893-899 (2004).
[CrossRef]

2003 (3)

2002 (1)

2001 (1)

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

1995 (1)

Argyros, A.

Bennion, I.

Bigot, L.

Birks, T. A.

Bouwmans, G.

Broeng, J.

Buckley, J. R.

Chiu, T. H.

Cordeiro, C. M. B.

de Matos, C. J. S.

Fermann, M. E.

Guina, M.

Hansen, T. P.

Hanser, K. P.

Harter, D.

Herda, R.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by highcontrast saturable absorber mirror," IEEE J. Quantum Electon. 40, 893-899 (2004).
[CrossRef]

Hofer, M.

Hofer, R.

Ilday, F. O.

Isomäki, A.

Jasapara, J.

Keinonen, J.

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Leon-Saval, S. G.

Lim, H.

Limpert, J.

Lopez, F.

Luan, F.

Mendonca, C. A. C.

Nielsen, C. K.

Ober, M. H.

Okhotnikov, O. G.

Orta, B.

Provino, L.

Quiquempois, Y.

Russel, P. St. J.

Russell, P. St. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Sajavaara, T.

Schreiber, T.

Sucha, G.

Sugden, K.

Taylor, J. R.

Tsing Hua Her, J.

Tünnermann, A.

Vainionpää, A.

Wise, F. W.

Wise, F.W.

Xiang, N.

IEEE J. Quantum Electon. (1)

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by highcontrast saturable absorber mirror," IEEE J. Quantum Electon. 40, 893-899 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (4)

Science (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, "Photonic Band Gap Guidance in Optical Fibers," Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

Other (4)

http://www.koheras.com/Menu/Products/Ultra+Wide+Band.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho and M. E. Fermann, "Ultra-compact dispersion compensated femtosecond fiber oscillators and amplifiers," CLEO, Baltimore, paper CThG1, May 2005.

C. K. Nielsen, B. Ortac¸, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. T¨unnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
[CrossRef] [PubMed]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332-3337 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Left: Dispersion of the SC-PBG, HC-PBG and standard fiber. Right: The insertion loss of the 0.36 m long SC-PBG fiber. The insertion loss is relative high compared to other components, but can be compensated by the high single pass gain of ytterbium. Insert: image of the SC-PBG fiber (top) and HC-PBG fiber (bottom).

Fig. 2.
Fig. 2.

Diagram of the laser system.

Fig. 3.
Fig. 3.

Left: Output spectrum from the oscillator and output spectrum after the amplifier and compressor at maximum amplification. Right: Experimental autocorrelation trace at maximum amplification. The autocorrelation trace is compared to the autocorrelation trace of the transform limited pulse, and the deconvoluted pulse duration is 158 fs (FWHM).

Fig. 4.
Fig. 4.

Left: Output power and output autocorrelation FWHM (of the top envelope) after the HC-PBG fiber. Right: Cut-back of HC-PBG fiber at the highest pump power.

Metrics