Abstract

An integrated optical waveguide variable optical attenuator (VOA) made of organic/inorganic hybrid materials was fabricated. At 1550 nm, the VOA showed a very low activation power of about 13 mW, due to the large thermo-optic coefficients of the hybrid materials. The optical power attenuations achieved were more than 25 dB for both TE and TM polarization. The response time of the device was less than 4.7 ms.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC type compact variable optical attenuator for photonic transport network," Electron. Lett. 34,264-265 (1998).
    [CrossRef]
  2. M. Svalgaard, K. Farch, and L.-U. Andersen, "Variable optical attenuator fabricated by direct UV writing," J. Lightwave Technol. 21,2097-2103 (2003).
    [CrossRef]
  3. T. Hurvitz, S. Ruschin, D. Brooks, G. Hurvitz, and E. Arad, "Variable optical attenuator based on ion-exchange technology in glass," J. Lightwave Technol. 23,1918-1922 (2005).
    [CrossRef]
  4. T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, "Polarization dependence of Mach-Zehnder interferometer switch using fluorinated polyimide waveguide," Jpn. J. Appl. Phys. 42,L30-L32 (2003).
    [CrossRef]
  5. S. -S. Lee, Y. -S. Jin, Y. -S. Son, and T. -K. Yoo, "Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network," IEEE Photon. Technol. Lett. 11,590-592 (1999).
    [CrossRef]
  6. Y. O. Noh, M. -S. Yang, Y. H. Won, and W. -Y. Hwang, "PLC-type variable optical attenuator operated at low electrical power," Electron. Lett. 36,2032-2033 (2000).
    [CrossRef]
  7. S. M. Garner and S. Caracci, "Variable optical attenuator for large-scale integration," IEEE Photon. Technol. Lett. 14,1560-1562 (2002).
    [CrossRef]
  8. G. Z. Xiao, Z. Y. Zhang, and C. P. Grover, "A variable optical attenuator based on a straight polymer-silica hybrid channel waveguide," IEEE Photon. Technol. Lett. 16,2511-2513 (2004).
    [CrossRef]
  9. E. -S. Kang, T. -H. Lee, and B. -S. Bae, "Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films," Appl. Phys. Lett. 81,1438-1440 (2002).
    [CrossRef]
  10. Xianjiang Wang, Lei Xu, Dongxiao Li, Liying Liu, and Wencheng Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94,4228-4230 (2003).
    [CrossRef]
  11. W. -K. Wang, H. J. Lee, and P. J. Anthony, "Planar silica-glass optical waveguides with thermally induced lateral mode confinement," J. Lightwave Technol. 14,429-436 (1996).
    [CrossRef]
  12. M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, "Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process," J. Non-Crystal.Solids 318,305-313 (2003).
    [CrossRef]

2005 (1)

2004 (1)

G. Z. Xiao, Z. Y. Zhang, and C. P. Grover, "A variable optical attenuator based on a straight polymer-silica hybrid channel waveguide," IEEE Photon. Technol. Lett. 16,2511-2513 (2004).
[CrossRef]

2003 (4)

Xianjiang Wang, Lei Xu, Dongxiao Li, Liying Liu, and Wencheng Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94,4228-4230 (2003).
[CrossRef]

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, "Polarization dependence of Mach-Zehnder interferometer switch using fluorinated polyimide waveguide," Jpn. J. Appl. Phys. 42,L30-L32 (2003).
[CrossRef]

M. Svalgaard, K. Farch, and L.-U. Andersen, "Variable optical attenuator fabricated by direct UV writing," J. Lightwave Technol. 21,2097-2103 (2003).
[CrossRef]

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, "Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process," J. Non-Crystal.Solids 318,305-313 (2003).
[CrossRef]

2002 (2)

S. M. Garner and S. Caracci, "Variable optical attenuator for large-scale integration," IEEE Photon. Technol. Lett. 14,1560-1562 (2002).
[CrossRef]

E. -S. Kang, T. -H. Lee, and B. -S. Bae, "Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films," Appl. Phys. Lett. 81,1438-1440 (2002).
[CrossRef]

2000 (1)

Y. O. Noh, M. -S. Yang, Y. H. Won, and W. -Y. Hwang, "PLC-type variable optical attenuator operated at low electrical power," Electron. Lett. 36,2032-2033 (2000).
[CrossRef]

1999 (1)

S. -S. Lee, Y. -S. Jin, Y. -S. Son, and T. -K. Yoo, "Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network," IEEE Photon. Technol. Lett. 11,590-592 (1999).
[CrossRef]

1998 (1)

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC type compact variable optical attenuator for photonic transport network," Electron. Lett. 34,264-265 (1998).
[CrossRef]

1996 (1)

W. -K. Wang, H. J. Lee, and P. J. Anthony, "Planar silica-glass optical waveguides with thermally induced lateral mode confinement," J. Lightwave Technol. 14,429-436 (1996).
[CrossRef]

Andersen, L.-U.

Anthony, P. J.

W. -K. Wang, H. J. Lee, and P. J. Anthony, "Planar silica-glass optical waveguides with thermally induced lateral mode confinement," J. Lightwave Technol. 14,429-436 (1996).
[CrossRef]

Arad, E.

Bae, B. -S.

E. -S. Kang, T. -H. Lee, and B. -S. Bae, "Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films," Appl. Phys. Lett. 81,1438-1440 (2002).
[CrossRef]

Brooks, D.

Caracci, S.

S. M. Garner and S. Caracci, "Variable optical attenuator for large-scale integration," IEEE Photon. Technol. Lett. 14,1560-1562 (2002).
[CrossRef]

Coudray, P.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, "Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process," J. Non-Crystal.Solids 318,305-313 (2003).
[CrossRef]

Etienne, P.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, "Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process," J. Non-Crystal.Solids 318,305-313 (2003).
[CrossRef]

Farch, K.

Garner, S. M.

S. M. Garner and S. Caracci, "Variable optical attenuator for large-scale integration," IEEE Photon. Technol. Lett. 14,1560-1562 (2002).
[CrossRef]

Grover, C. P.

G. Z. Xiao, Z. Y. Zhang, and C. P. Grover, "A variable optical attenuator based on a straight polymer-silica hybrid channel waveguide," IEEE Photon. Technol. Lett. 16,2511-2513 (2004).
[CrossRef]

Hurvitz, G.

Hurvitz, T.

Hwang, W. -Y.

Y. O. Noh, M. -S. Yang, Y. H. Won, and W. -Y. Hwang, "PLC-type variable optical attenuator operated at low electrical power," Electron. Lett. 36,2032-2033 (2000).
[CrossRef]

Jin, Y. -S.

S. -S. Lee, Y. -S. Jin, Y. -S. Son, and T. -K. Yoo, "Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network," IEEE Photon. Technol. Lett. 11,590-592 (1999).
[CrossRef]

Kang, E. -S.

E. -S. Kang, T. -H. Lee, and B. -S. Bae, "Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films," Appl. Phys. Lett. 81,1438-1440 (2002).
[CrossRef]

Kawai, T.

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC type compact variable optical attenuator for photonic transport network," Electron. Lett. 34,264-265 (1998).
[CrossRef]

Kitoh, T.

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC type compact variable optical attenuator for photonic transport network," Electron. Lett. 34,264-265 (1998).
[CrossRef]

Koga, M.

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC type compact variable optical attenuator for photonic transport network," Electron. Lett. 34,264-265 (1998).
[CrossRef]

Lee, H. J.

W. -K. Wang, H. J. Lee, and P. J. Anthony, "Planar silica-glass optical waveguides with thermally induced lateral mode confinement," J. Lightwave Technol. 14,429-436 (1996).
[CrossRef]

Lee, S. -S.

S. -S. Lee, Y. -S. Jin, Y. -S. Son, and T. -K. Yoo, "Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network," IEEE Photon. Technol. Lett. 11,590-592 (1999).
[CrossRef]

Lee, T. -H.

E. -S. Kang, T. -H. Lee, and B. -S. Bae, "Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films," Appl. Phys. Lett. 81,1438-1440 (2002).
[CrossRef]

Moreau, Y.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, "Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process," J. Non-Crystal.Solids 318,305-313 (2003).
[CrossRef]

Noh, Y. O.

Y. O. Noh, M. -S. Yang, Y. H. Won, and W. -Y. Hwang, "PLC-type variable optical attenuator operated at low electrical power," Electron. Lett. 36,2032-2033 (2000).
[CrossRef]

Okuno, M.

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC type compact variable optical attenuator for photonic transport network," Electron. Lett. 34,264-265 (1998).
[CrossRef]

Oubaha, M.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, "Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process," J. Non-Crystal.Solids 318,305-313 (2003).
[CrossRef]

Ruschin, S.

Shichijyo, S.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, "Polarization dependence of Mach-Zehnder interferometer switch using fluorinated polyimide waveguide," Jpn. J. Appl. Phys. 42,L30-L32 (2003).
[CrossRef]

Shioda, T.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, "Polarization dependence of Mach-Zehnder interferometer switch using fluorinated polyimide waveguide," Jpn. J. Appl. Phys. 42,L30-L32 (2003).
[CrossRef]

Smaihi, M.

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, "Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process," J. Non-Crystal.Solids 318,305-313 (2003).
[CrossRef]

Son, Y. -S.

S. -S. Lee, Y. -S. Jin, Y. -S. Son, and T. -K. Yoo, "Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network," IEEE Photon. Technol. Lett. 11,590-592 (1999).
[CrossRef]

Suzuki, K.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, "Polarization dependence of Mach-Zehnder interferometer switch using fluorinated polyimide waveguide," Jpn. J. Appl. Phys. 42,L30-L32 (2003).
[CrossRef]

Svalgaard, M.

Takamatsu, N.

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, "Polarization dependence of Mach-Zehnder interferometer switch using fluorinated polyimide waveguide," Jpn. J. Appl. Phys. 42,L30-L32 (2003).
[CrossRef]

Wang, W. -K.

W. -K. Wang, H. J. Lee, and P. J. Anthony, "Planar silica-glass optical waveguides with thermally induced lateral mode confinement," J. Lightwave Technol. 14,429-436 (1996).
[CrossRef]

Won, Y. H.

Y. O. Noh, M. -S. Yang, Y. H. Won, and W. -Y. Hwang, "PLC-type variable optical attenuator operated at low electrical power," Electron. Lett. 36,2032-2033 (2000).
[CrossRef]

Xiao, G. Z.

G. Z. Xiao, Z. Y. Zhang, and C. P. Grover, "A variable optical attenuator based on a straight polymer-silica hybrid channel waveguide," IEEE Photon. Technol. Lett. 16,2511-2513 (2004).
[CrossRef]

Yang, M. -S.

Y. O. Noh, M. -S. Yang, Y. H. Won, and W. -Y. Hwang, "PLC-type variable optical attenuator operated at low electrical power," Electron. Lett. 36,2032-2033 (2000).
[CrossRef]

Yoo, T. -K.

S. -S. Lee, Y. -S. Jin, Y. -S. Son, and T. -K. Yoo, "Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network," IEEE Photon. Technol. Lett. 11,590-592 (1999).
[CrossRef]

Zhang, Z. Y.

G. Z. Xiao, Z. Y. Zhang, and C. P. Grover, "A variable optical attenuator based on a straight polymer-silica hybrid channel waveguide," IEEE Photon. Technol. Lett. 16,2511-2513 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

E. -S. Kang, T. -H. Lee, and B. -S. Bae, "Measurement of the thermo-optic coefficients in sol-gel derived inorganic-organic hybrid material films," Appl. Phys. Lett. 81,1438-1440 (2002).
[CrossRef]

Electron. Lett. (2)

Y. O. Noh, M. -S. Yang, Y. H. Won, and W. -Y. Hwang, "PLC-type variable optical attenuator operated at low electrical power," Electron. Lett. 36,2032-2033 (2000).
[CrossRef]

T. Kawai, M. Koga, M. Okuno, and T. Kitoh, "PLC type compact variable optical attenuator for photonic transport network," Electron. Lett. 34,264-265 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. M. Garner and S. Caracci, "Variable optical attenuator for large-scale integration," IEEE Photon. Technol. Lett. 14,1560-1562 (2002).
[CrossRef]

G. Z. Xiao, Z. Y. Zhang, and C. P. Grover, "A variable optical attenuator based on a straight polymer-silica hybrid channel waveguide," IEEE Photon. Technol. Lett. 16,2511-2513 (2004).
[CrossRef]

S. -S. Lee, Y. -S. Jin, Y. -S. Son, and T. -K. Yoo, "Polymeric tunable optical attenuator with an optical monitoring tap for WDM transmission network," IEEE Photon. Technol. Lett. 11,590-592 (1999).
[CrossRef]

J. Appl. Phys. (1)

Xianjiang Wang, Lei Xu, Dongxiao Li, Liying Liu, and Wencheng Wang, "Thermo-optic properties of sol-gel-fabricated organic-inorganic hybrid waveguides," J. Appl. Phys. 94,4228-4230 (2003).
[CrossRef]

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys. (1)

T. Shioda, N. Takamatsu, K. Suzuki, and S. Shichijyo, "Polarization dependence of Mach-Zehnder interferometer switch using fluorinated polyimide waveguide," Jpn. J. Appl. Phys. 42,L30-L32 (2003).
[CrossRef]

Solids (1)

M. Oubaha, M. Smaihi, P. Etienne, P. Coudray, and Y. Moreau, "Spectroscopic characterization of intrinsic losses in an organic-inorganic hybrid waveguide synthesized by the sol-gel process," J. Non-Crystal.Solids 318,305-313 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Schematic of the MZI type VOA configuration; (b) Microscope image of the cross section of the strip waveguide (bar: 10µm).

Fig. 2.
Fig. 2.

Optical attenuation of the VOA as a function of electrical power applied to one electrode of the VOA.

Fig. 3.
Fig. 3.

Simulated change in activation power with the thickness of up-cladding layer of the VOA. The thickness of under-cladding layer is (a) 2 µm, (b) 4 µm and (c) 13 µm.

Fig. 4.
Fig. 4.

Wavelength dependence of maximum attenuations.

Fig. 5.
Fig. 5.

Activation power of the VOA as a function of wavelength.

Fig. 6.
Fig. 6.

PDL as a function of TM polarization attenuation amplitude at 1550 nm.

Metrics