Abstract

A compact and low loss silicon-on-insulator rib waveguide 90° bend is designed and demonstrated. An interface realized by a trench filled with SU8 at the corner of a waveguide bend effectively reflects incoming light through total internal reflection (TIR). In order to accurately position the SU8-filled trench relative to the waveguide and reduce sidewall roughness of the interface, electron beam lithography (EBL) is employed while inductively coupled plasma reactive ion etching (ICP RIE) is used to achieve a vertical sidewall. The measured loss for TE polarization is 0.32 dB±0.02 dB/bend at a wavelength of 1.55 µm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 68-70 (2002).
    [CrossRef]
  2. S. Ladenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, and L. Mollard, "Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors," Opt. Lett. 28, 1150-1152 (2003).
    [CrossRef]
  3. J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4 X 4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," IEEE Photon. Technol. Lett. 17, 1187-1189 (2005).
    [CrossRef]
  4. R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).
    [CrossRef]
  5. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bens," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  6. A. Vorckel, M. Moster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
    [CrossRef]
  7. I. Kiyat, A. Aydinli, and N. Dagli, "High-Q silicon-on-insulator optical rib waveguide racetrack resonators," Opt. Express 13, 1900-1905 (2005).
    [CrossRef] [PubMed]
  8. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
    [CrossRef]
  9. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  10. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
    [CrossRef]
  11. P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
    [CrossRef]
  12. C. Angulo Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, "Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices," J. Lightwave Technol. 21, 2332-2338 (2003).
    [CrossRef]
  13. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
    [CrossRef] [PubMed]
  14. R. Jones, A. Liu, H. Rong, and M. Paniccia, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
    [CrossRef] [PubMed]
  15. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
    [CrossRef] [PubMed]
  16. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
    [CrossRef] [PubMed]
  17. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass.,1995).
  18. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]
  19. J. Cai, G. P. Nordin, S. Kim, and J. Jiang, "Three-dimensional analysis of a hybrid photonic crystal-conventional waveguide 90o bend," Appl. Opt. 43, 4244-4249 (2004).
    [CrossRef] [PubMed]
  20. M. J. Madou, "Lithography," in Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, Fla., 2002) pp. 28-29.

2005 (6)

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4 X 4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," IEEE Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, and M. Paniccia, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

I. Kiyat, A. Aydinli, and N. Dagli, "High-Q silicon-on-insulator optical rib waveguide racetrack resonators," Opt. Express 13, 1900-1905 (2005).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005).
[CrossRef] [PubMed]

2004 (4)

2003 (3)

2002 (2)

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).
[CrossRef]

2000 (1)

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

1998 (1)

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

1994 (1)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Ahmad, R. U.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).
[CrossRef]

Almeida, V. R.

Angulo Barrios, C.

Aydinli, A.

Baets, R.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Beckx, S

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Berenger, J. P.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Bogaerts, W.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Bolivar, P. H.

A. Vorckel, M. Moster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Bouzaida, N.

Boyraz, O.

Cai, J.

Camarda, G. S.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).
[CrossRef]

Campenhout, J. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Cassan, E.

Chabloz, M.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Chen, S.

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4 X 4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," IEEE Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

Cohen, O.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Coppinger, F.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Dagli, N.

Dainesi, P.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Declerq, M.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Dumon, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Espinola, R. L.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).
[CrossRef]

Fang, A.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Fazan, P.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Fluckiger, Ph.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Hak, D.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Heitzmann, M.

Henschel, W.

A. Vorckel, M. Moster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Ionescu, A.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Jalali, B.

O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004).
[CrossRef] [PubMed]

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Jiang, J.

Jones, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, and M. Paniccia, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

Kim, S.

Kiyat, I.

Kung, A.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Kurz, H.

A. Vorckel, M. Moster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Ladenois, S.

Lagos, A.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Laval, S.

Li, T.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

Li, Z.

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4 X 4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," IEEE Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

Lipson, M.

Liu, A.

R. Jones, A. Liu, H. Rong, and M. Paniccia, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Liu, J.

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4 X 4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," IEEE Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

McNab, S. J.

Mollard, L.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Moster, M.

A. Vorckel, M. Moster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Nicolaescu, R.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Nordin, G. P.

Orobtchouk, R.

Osgood, R. M.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).
[CrossRef]

Panepucci, R.

Paniccia, M.

R. Jones, A. Liu, H. Rong, and M. Paniccia, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Pascal, D.

Pizzuto, F.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).
[CrossRef]

Preble, S. F.

Rao, H.

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).
[CrossRef]

Renaud, Ph.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Rendina, I.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Robert, Ph.

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

Rong, H.

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

R. Jones, A. Liu, H. Rong, and M. Paniccia, "Lossless optical modulation in a silicon waveguide using stimulated Raman scattering," Opt. Express 13, 1716-1723 (2005).
[CrossRef] [PubMed]

Schmidt, B. S.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Tang, Y. Z.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

Thourhout, D. V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Vivien, L.

Vlasov, Y. A.

Vorckel, A.

A. Vorckel, M. Moster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Wang, W. H.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

Wang, Y. L.

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

Xu, Q.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Yegnanarayanan, S.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Yoon, T.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Yoshimoto, T.

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

Yu, J.

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4 X 4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," IEEE Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, "Advances in silicon-on-insulator optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 938-947 (1998).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

P. Dainesi, A. Kung, M. Chabloz, A. Lagos, Ph. Fluckiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, "CMOS compatible fully integrated mach-zehnder interferometer in SOI technology," IEEE Photon. Technol. Lett. 12, 660-662 (2000).
[CrossRef]

A. Vorckel, M. Moster, W. Henschel, P. H. Bolivar, and H. Kurz, "Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers," IEEE Photon. Technol. Lett. 15, 921-923 (2003).
[CrossRef]

Y. Z. Tang, W. H. Wang, T. Li, and Y. L. Wang, "Integrated waveguide turning mirror in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 68-70 (2002).
[CrossRef]

J. Liu, J. Yu, S. Chen, and Z. Li, "Integrated folding 4 X 4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching," IEEE Photon. Technol. Lett. 17, 1187-1189 (2005).
[CrossRef]

R. U. Ahmad, F. Pizzuto, G. S. Camarda, R. L. Espinola, H. Rao, and R. M. Osgood, Jr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout, and R. Baets, "Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography," IEEE Photon. Technol. Lett. 16, 1328-1330 (2004).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, "An all-silicon Raman laser," Nature 433, 292-294 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Other (2)

M. J. Madou, "Lithography," in Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, Fla., 2002) pp. 28-29.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, Mass.,1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Cross section and (b) fundamental TE mode of single mode SOI rib waveguide.

Fig. 2.
Fig. 2.

SOI rib waveguide bend geometries: (a) Right angle bend (Case 1), (b) right angle bend with additional core at the inner side of bend corner (Case 2) [1], and (c) right angle bend with additional core at the outer side of bend corner (Case 3) [2]. ‘D’ in Fig. 2(a) is defined as the distance from the intersection of the center lines of the input and output waveguides to the interface between air/SU8-filled trench and SOI rib waveguide region.

Fig. 3.
Fig. 3.

(a) Magnitude squared time averaged magnetic field and (b) bend efficiency as a function of ‘D’ of compact and low loss SOI waveguide bend design at λ=1.55 µm.

Fig. 4.
Fig. 4.

Vernier patterns to determine alignment accuracy of EBL along X and Y directions.

Fig. 5.
Fig. 5.

Fabrication process of compact and high efficiency SOI rib waveguide bend with SU8 filled trench.

Fig. 6.
Fig. 6.

SEM images of (a) 2 bends and (b) close up of a single bend after trench etch and before SU8 spin coating.

Fig. 7.
Fig. 7.

SEM image of interface of trench and SOI rib waveguide showing roughness of the interface sidewall.

Fig. 8.
Fig. 8.

Measured loss of compact SOI rib waveguide bend with SU8 filled trench as a function of number of bends at λ=1.55 µm.

Tables (1)

Tables Icon

Table 1. Calculated bend efficiencies of three different structures filled with either air or SU8.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = Γ FF η 2 D
Γ FF = R P ( s ) ds P ( s ) ds

Metrics