Abstract

The effect of thickness uniformity and distortion on the performance of large-aperture Fabry-Perot etalon filters is investigated. It is shown that for etalons currently being used for solar observation it is important to consider the effect of distortion due to mounting and to gravity when in use. It is further shown that the effects of distortion can be largely avoided by operating the etalon at or near normal incidence.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Rust, "Etalon filters," Opt. Eng. 33, 3342-3348, 1994.
    [CrossRef]
  2. C. D. Prasad, S. K. Mathew, A. Bhatnagar, and A Ambastha, "Solar photospheric and chromospheric observations using a lithium niobate Fabry-Perot etalon," Exp. Astron. 8, 125-133, (1998).
    [CrossRef]
  3. J. Arkwright, I. Underhill, N. Pereira, and M. Gross, "Deterministic control of thin film thickness in physical vapor deposition systems using a multi-aperture mask," Opt. Express 13, 2731-2741 (2005).
    [CrossRef] [PubMed]
  4. V. Martínez Pillet, J. A. Bonet, M. Collados, et al., "The imaging magnetograph experiment for the SUNRISE balloon Antarctica project, Proc. SPIE 5487,1152-1164, 2004.
    [CrossRef]
  5. E. Hecht, Optics, (Addison-Wesley, Massachusetts, 1987).
  6. J. Arkwright, D. Farrant, and J. Zhang, "Sub-nanometer metrology of optical wafers using an angle-scanned Fabry-Perot interferometer," Opt. Express 14, 114-119 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

V. Martínez Pillet, J. A. Bonet, M. Collados, et al., "The imaging magnetograph experiment for the SUNRISE balloon Antarctica project, Proc. SPIE 5487,1152-1164, 2004.
[CrossRef]

1998 (1)

C. D. Prasad, S. K. Mathew, A. Bhatnagar, and A Ambastha, "Solar photospheric and chromospheric observations using a lithium niobate Fabry-Perot etalon," Exp. Astron. 8, 125-133, (1998).
[CrossRef]

1994 (1)

D. M. Rust, "Etalon filters," Opt. Eng. 33, 3342-3348, 1994.
[CrossRef]

Ambastha, A

C. D. Prasad, S. K. Mathew, A. Bhatnagar, and A Ambastha, "Solar photospheric and chromospheric observations using a lithium niobate Fabry-Perot etalon," Exp. Astron. 8, 125-133, (1998).
[CrossRef]

Arkwright, J.

Bhatnagar, A.

C. D. Prasad, S. K. Mathew, A. Bhatnagar, and A Ambastha, "Solar photospheric and chromospheric observations using a lithium niobate Fabry-Perot etalon," Exp. Astron. 8, 125-133, (1998).
[CrossRef]

Bonet, J. A.

V. Martínez Pillet, J. A. Bonet, M. Collados, et al., "The imaging magnetograph experiment for the SUNRISE balloon Antarctica project, Proc. SPIE 5487,1152-1164, 2004.
[CrossRef]

Collados, M.

V. Martínez Pillet, J. A. Bonet, M. Collados, et al., "The imaging magnetograph experiment for the SUNRISE balloon Antarctica project, Proc. SPIE 5487,1152-1164, 2004.
[CrossRef]

Farrant, D.

Gross, M.

Martínez Pillet, V.

V. Martínez Pillet, J. A. Bonet, M. Collados, et al., "The imaging magnetograph experiment for the SUNRISE balloon Antarctica project, Proc. SPIE 5487,1152-1164, 2004.
[CrossRef]

Mathew, S. K.

C. D. Prasad, S. K. Mathew, A. Bhatnagar, and A Ambastha, "Solar photospheric and chromospheric observations using a lithium niobate Fabry-Perot etalon," Exp. Astron. 8, 125-133, (1998).
[CrossRef]

Pereira, N.

Prasad, C. D.

C. D. Prasad, S. K. Mathew, A. Bhatnagar, and A Ambastha, "Solar photospheric and chromospheric observations using a lithium niobate Fabry-Perot etalon," Exp. Astron. 8, 125-133, (1998).
[CrossRef]

Rust, D. M.

D. M. Rust, "Etalon filters," Opt. Eng. 33, 3342-3348, 1994.
[CrossRef]

Underhill, I.

Zhang, J.

Exp. Astron. (1)

C. D. Prasad, S. K. Mathew, A. Bhatnagar, and A Ambastha, "Solar photospheric and chromospheric observations using a lithium niobate Fabry-Perot etalon," Exp. Astron. 8, 125-133, (1998).
[CrossRef]

Opt. Eng. (1)

D. M. Rust, "Etalon filters," Opt. Eng. 33, 3342-3348, 1994.
[CrossRef]

Opt. Express (2)

Proc. SPIE (1)

V. Martínez Pillet, J. A. Bonet, M. Collados, et al., "The imaging magnetograph experiment for the SUNRISE balloon Antarctica project, Proc. SPIE 5487,1152-1164, 2004.
[CrossRef]

Other (1)

E. Hecht, Optics, (Addison-Wesley, Massachusetts, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the laser deflectometer used to measure the distortion of the etalon wafers.

Fig. 2.
Fig. 2.

Ideal and effective transmission functions of a large aperture etalon indicating the FSR and FWHM e used to calculate the effective finesse.

Fig. 3.
Fig. 3.

Thickness variation map of the undistorted etalon, measured while mounted in the vertical plane. Horizontal and vertical axes are in pixel units (1 pixel≈0.6 mm).

Fig. 4.
Fig. 4.

Thickness variation map of the physically-distorted etalon measured while mounted in the vertical plane, at a mean angle of incidence of 3.94°. The locations of the aluminium tabs used to distort the etalon are also indicated. The horizontal pair of tabs were positioned behind the etalon and the vertical pair were in front of the etalon to induce the required distortion. Horizontal and vertical axes are in pixel units (1 pixel≈0.6 mm).

Fig. 5.
Fig. 5.

Gravity-induced distortion functions, measured with the etalon held in vertical and horizontal planes

Fig. 6.
Fig. 6.

Thickness variation map of the numerically-distorted etalon in the horizontal plane using the measured distortion due to gravity at an angle of 3.94°. Horizontal and vertical axes are in pixel units (1 pixel≈0.6 mm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( d , R , λ , θ i ) = 1 1 + ( 4 R ( 1 R ) 2 ) sin 2 ( 2 π n i d cos ( θ i ) λ ) ,
θ e = sin 1 ( n i n e sin ( θ i ) ) ,
F e = FSR FWHM e ,

Metrics