Abstract

We analyze the resolution limit that can be achieved by means of spectral reshaping in optical coherence tomography images and demonstrate that the resolution can be improved by means of modelessly reshaping the source spectrum in postprocessing. We show that the optimal spectrum has a priory surprising “crater-like” shape, providing 0.74 micron axial resolution in free-space. This represents ~50% improvement compared to resolution using the original spectrum of a white light lamp.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
    [CrossRef] [PubMed]
  2. Brett E.  Bouma, Guillermo J. Tearney, Handbook of optical coherence tomograph, (Marcel Dekker, New York, 2002)
  3. B. Bouma, G. Tearney, S. Boppart, M. Hee, M. Brezinski, and J. Fujimoto, "High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source," Opt. Lett. 201486-1488 (1995)
    [CrossRef] [PubMed]
  4. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 271800-1802 (2002)
    [CrossRef]
  5. Wolfgang Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004)
    [CrossRef] [PubMed]
  6. A. Dubois, G. Moneron, K. Grieve and A.C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 491227-1234 (2004)
    [CrossRef] [PubMed]
  7. A. Wax, C.H. Yang, J.A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 281230-1232 (2003)
    [CrossRef] [PubMed]
  8. Yan Zhang, Manabu Sato, "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes," Opt. Lett. 26, 205-207 (2001)
    [CrossRef]
  9. Renu Tripathi, Nader Nassif, J. Stuart Nelson, Boris Hyle Park and Johannes F. de Boer, "Spectral shaping for non-Gaussian source spectra in optical coherence tomography," Opt. Lett. 27, 406-408 (2002)
    [CrossRef]
  10. E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, "Spectral domain interferometry for OCDR using non-Gaussian broadband sources," IEEE Photon. Technol. Lett. 13, 64-66 (2001)
    [CrossRef]
  11. A. Ceyhun Akcay, JannickP. Rolland and Jason M. Eichenholz, "Spectral shaping to improve the point spread function in optical coherence tomography," Opt. Lett. 28, 1921-1923 (2003)
    [CrossRef] [PubMed]
  12. Daniel Marks, P. S. Carney, Stephen A. Boppart, "Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images," J. Biomed. Opt. 9, 1281-1287 (2004)
    [CrossRef] [PubMed]
  13. T.F. Coleman, and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables," SIAM J. Optimiz. 6, 1040-1058 (1996)
    [CrossRef]

2004

Wolfgang Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004)
[CrossRef] [PubMed]

A. Dubois, G. Moneron, K. Grieve and A.C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 491227-1234 (2004)
[CrossRef] [PubMed]

Daniel Marks, P. S. Carney, Stephen A. Boppart, "Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images," J. Biomed. Opt. 9, 1281-1287 (2004)
[CrossRef] [PubMed]

2003

2002

2001

Yan Zhang, Manabu Sato, "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes," Opt. Lett. 26, 205-207 (2001)
[CrossRef]

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, "Spectral domain interferometry for OCDR using non-Gaussian broadband sources," IEEE Photon. Technol. Lett. 13, 64-66 (2001)
[CrossRef]

1996

T.F. Coleman, and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables," SIAM J. Optimiz. 6, 1040-1058 (1996)
[CrossRef]

1995

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Apolonski, A.

Bizheva, K.

Boccara, A.C.

A. Dubois, G. Moneron, K. Grieve and A.C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 491227-1234 (2004)
[CrossRef] [PubMed]

Boppart, S.

Boppart, Stephen A.

Daniel Marks, P. S. Carney, Stephen A. Boppart, "Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images," J. Biomed. Opt. 9, 1281-1287 (2004)
[CrossRef] [PubMed]

Bouma, B.

Brezinski, M.

Carney, P. S.

Daniel Marks, P. S. Carney, Stephen A. Boppart, "Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images," J. Biomed. Opt. 9, 1281-1287 (2004)
[CrossRef] [PubMed]

Ceyhun Akcay, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Chujo, W.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, "Spectral domain interferometry for OCDR using non-Gaussian broadband sources," IEEE Photon. Technol. Lett. 13, 64-66 (2001)
[CrossRef]

Coleman, T.F.

T.F. Coleman, and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables," SIAM J. Optimiz. 6, 1040-1058 (1996)
[CrossRef]

Daniel Marks,

Daniel Marks, P. S. Carney, Stephen A. Boppart, "Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images," J. Biomed. Opt. 9, 1281-1287 (2004)
[CrossRef] [PubMed]

de Boer, Johannes F.

Drexler, W.

Drexler, Wolfgang

Wolfgang Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004)
[CrossRef] [PubMed]

Dubois, A.

A. Dubois, G. Moneron, K. Grieve and A.C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 491227-1234 (2004)
[CrossRef] [PubMed]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Grieve, K.

A. Dubois, G. Moneron, K. Grieve and A.C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 491227-1234 (2004)
[CrossRef] [PubMed]

Hee, M.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Hermann, B.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Izatt, J.A.

Jannick, A.

Knight, J. C.

Li, Y.

T.F. Coleman, and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables," SIAM J. Optimiz. 6, 1040-1058 (1996)
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Moneron, G.

A. Dubois, G. Moneron, K. Grieve and A.C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 491227-1234 (2004)
[CrossRef] [PubMed]

Moore, S. C.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, "Spectral domain interferometry for OCDR using non-Gaussian broadband sources," IEEE Photon. Technol. Lett. 13, 64-66 (2001)
[CrossRef]

Nassif, Nader

Nelson, J. Stuart

Park, Boris Hyle

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Russell, P. St. J.

Sampson, D. D.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, "Spectral domain interferometry for OCDR using non-Gaussian broadband sources," IEEE Photon. Technol. Lett. 13, 64-66 (2001)
[CrossRef]

Sato, Manabu

Sattmann, H.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Smith, E.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, "Spectral domain interferometry for OCDR using non-Gaussian broadband sources," IEEE Photon. Technol. Lett. 13, 64-66 (2001)
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

Tearney, G.

Tripathi, Renu

Unterhuber, A.

Vetterlein, M.

Wada, N.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, "Spectral domain interferometry for OCDR using non-Gaussian broadband sources," IEEE Photon. Technol. Lett. 13, 64-66 (2001)
[CrossRef]

Wadsworth, W. J.

Wax, A.

Yang, C.H.

Zhang, Yan

IEEE Photon. Technol. Lett.

E. Smith, S. C. Moore, N. Wada, W. Chujo, and D. D. Sampson, "Spectral domain interferometry for OCDR using non-Gaussian broadband sources," IEEE Photon. Technol. Lett. 13, 64-66 (2001)
[CrossRef]

J. Biomed. Opt.

Daniel Marks, P. S. Carney, Stephen A. Boppart, "Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images," J. Biomed. Opt. 9, 1281-1287 (2004)
[CrossRef] [PubMed]

Wolfgang Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004)
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

A. Dubois, G. Moneron, K. Grieve and A.C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomography," Phys. Med. Biol. 491227-1234 (2004)
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science,  254, 1178 (1991).
[CrossRef] [PubMed]

SIAM J. Optimiz.

T.F. Coleman, and Y. Li, "A Reflective Newton Method for Minimizing a Quadratic Function Subject to Bounds on Some of the Variables," SIAM J. Optimiz. 6, 1040-1058 (1996)
[CrossRef]

Other

Brett E.  Bouma, Guillermo J. Tearney, Handbook of optical coherence tomograph, (Marcel Dekker, New York, 2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

PSF optimization algorithm

Fig. 2.
Fig. 2.

Typical light source spectra

Fig. 3.
Fig. 3.

The optimal PSF provides improved OCT resolution for the source spectra shown in Fig. 3. (a) Envelopes of theoretical PSFs (b) Envelopes of experimentally measured PSFs. PSFs in the insets are normalized to conserve the L2 norm.

Fig. 4.
Fig. 4.

Schematic of a spectral domain OCT system: BS, beam splitter; NDF, neutral density filter; PCG, phase compensation glass; RM, reference mirror

Fig. 5.
Fig. 5.

OCT images of an onion root tip tissue (a) Image obtained with the originally detected xenon spectrum. (b) Image obtained with the optimal spectrum. (c) Intensity cross section from the image shown in panel (a) at lateral position 80 µm. (d) Intensity cross section from the image shown in panel (b) at lateral position 80 µm.

Tables (1)

Tables Icon

Table 1. Optimal PSF has improved FWHM and RMSW compared to other PSF given by white light, Gaussian, and Hamming windowed spectra

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( k , r ) = P ( k ) Q ( k ) R 1 2 ( k ) exp [ 2 i k ( z 0 + r ) ] + S 1 2 ( k ) 0 a ( z ) exp [ 2 i k ( z 0 + n z ) ] d z 2
= P ( k ) Q ( k ) { R ( k ) + S ( k ) B + [ R ( k ) S ( k ) B ] 1 2 I d ( k , r ) }
I d ( k , r ) = [ I ( k , r ) PQR PQSB ] [ ( PQR ) × ( PQSB ) ] 1 2 .
I d ( r ) = k 1 k 2 V ( k ) I d ( k , r ) d k = 2 0 a ( z ) PSF ( Z ) d z B 1 2
PSF ( Z ) PSF ( r n z ) k 1 k 2 V ( k ) cos 2 k ( r n z ) d k
PSF ( Z ) = 0 V ( k ) rect ( k 1 , k 2 ) cos 2 k Z d k = [ 0 V ( k ) cos 2 k Z d k ] U ( Z )
( f 1 f 2 f M ) = [ g 11 g 12 G 1 W g 21 g 21 g 2 W g M 1 g M 2 g M W ] ( v 1 v 2 v W ) or F = G V ,

Metrics