Abstract

We demonstrate the generation of slow and fast light based on stimulated Brillouin scattering in As2Se3 chalcogenide fiber with the best efficiency ever reported. The Brillouin gain of 43 dB is achieved with only 60-mW pump power in a 5-m single-mode chalcogenide fiber, which leads to the optical time delay of 37 ns with a 50-ns Gaussian pulse.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, D. J. Gauthier, and E. Wolf, Ed. (Elsevier, Amsterdam, 2002), 497–530.
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [Crossref]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow-light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
    [Crossref] [PubMed]
  4. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
    [Crossref] [PubMed]
  5. K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
    [Crossref] [PubMed]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [Crossref] [PubMed]
  7. K. Y. Song, M. G. Herraez, and L. Thevenaz, “Long optically-controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
    [Crossref] [PubMed]
  8. J. E. Sharping, Y. Okawachi, and Alexander L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
    [Crossref] [PubMed]
  9. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [Crossref] [PubMed]
  10. M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
    [Crossref]
  11. M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395–1400 (2006).
    [Crossref] [PubMed]
  12. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS Slow Light in Optical Fibers,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP1 (2006).
  13. C. Jauregui, H. Ono, P. Petropoulos, and D. J. Richardson, “Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP2 (2006).
  14. K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
    [Crossref] [PubMed]
  15. K. S. Abedin, “Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber,” Opt. Lett. 31, to be published (2006).
    [PubMed]
  16. D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 µm,” Electron. Lett. 18, 495–496 (1982).
    [Crossref]
  17. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, 29 (1992).
    [Crossref]
  18. R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
    [Crossref]
  19. K. Y. Song, M. González Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
    [Crossref] [PubMed]

2006 (1)

2005 (10)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[Crossref]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
[Crossref] [PubMed]

K. Y. Song, M. G. Herraez, and L. Thevenaz, “Long optically-controlled delays in optical fibers,” Opt. Lett. 30, 1782–1784 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and Alexander L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[Crossref] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[Crossref] [PubMed]

K. Y. Song, M. González Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
[Crossref] [PubMed]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
[Crossref] [PubMed]

K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
[Crossref] [PubMed]

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow-light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

1992 (1)

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, 29 (1992).
[Crossref]

1982 (1)

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 µm,” Electron. Lett. 18, 495–496 (1982).
[Crossref]

Abedin, K. S.

K. S. Abedin, “Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber,” Opt. Express 13, 10266–10271 (2005).
[Crossref] [PubMed]

K. S. Abedin, “Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber,” Opt. Lett. 31, to be published (2006).
[PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow-light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow-light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Chang-Hasnain, C.

Cotter, D.

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 µm,” Electron. Lett. 18, 495–496 (1982).
[Crossref]

Crankshaw, S.

Dahan, D.

Dawes, A. M. C.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS Slow Light in Optical Fibers,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP1 (2006).

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Eisenstein, G.

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, 29 (1992).
[Crossref]

Gaeta, A. L.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Gaeta, Alexander L.

Gauthier, D. J.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS Slow Light in Optical Fibers,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP1 (2006).

González Herráez, M.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, 29 (1992).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Herraez, M. G.

Herráez, M. G.

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

K. Y. Song, M. G. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
[Crossref] [PubMed]

Jauregui, C.

C. Jauregui, H. Ono, P. Petropoulos, and D. J. Richardson, “Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP2 (2006).

Kasapi, A.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, 29 (1992).
[Crossref]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow-light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Moewe, M.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and Alexander L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[Crossref] [PubMed]

Ono, H.

C. Jauregui, H. Ono, P. Petropoulos, and D. J. Richardson, “Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP2 (2006).

Palinginis, P.

Petropoulos, P.

C. Jauregui, H. Ono, P. Petropoulos, and D. J. Richardson, “Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP2 (2006).

Richardson, D. J.

C. Jauregui, H. Ono, P. Petropoulos, and D. J. Richardson, “Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP2 (2006).

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Sedgwick, F.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and Alexander L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[Crossref] [PubMed]

Song, K. Y.

Thevenaz, L.

Thévenaz, L.

Willner, A. E.

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[Crossref]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS Slow Light in Optical Fibers,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP1 (2006).

Zhang, L.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS Slow Light in Optical Fibers,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP1 (2006).

Zhu, Z.

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS Slow Light in Optical Fibers,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP1 (2006).

Zhu, Z. M.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. G. Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

Electron. Lett. (1)

D. Cotter, “Observation of stimulated Brillouin scattering in low-loss silica fiber at 1.3 µm,” Electron. Lett. 18, 495–496 (1982).
[Crossref]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. A (2)

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, 29 (1992).
[Crossref]

R. W. Boyd, D. J. Gauthier, A. L. Gaeta, and A. E. Willner, “Maximum time delay achievable on propagation through a slow-light medium,” Phys. Rev. A 71, 023801 (2005).
[Crossref]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow-light propagation in a room-temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Other (4)

R. W. Boyd, D. J. Gauthier, and E. Wolf, Ed. (Elsevier, Amsterdam, 2002), 497–530.

K. S. Abedin, “Brillouin amplification and lasing in a single-mode As2Se3 chalcogenide fiber,” Opt. Lett. 31, to be published (2006).
[PubMed]

Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS Slow Light in Optical Fibers,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP1 (2006).

C. Jauregui, H. Ono, P. Petropoulos, and D. J. Richardson, “Four-fold reduction in the speed of light at practical power levels using Brillouin scattering in a 2-m bismuth-oxide fiber,” in Conference on Optical Fiber Communication (OFC 2006), Paper PDP2 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Setup for optical delay experiment using a As2Se3 chalcogenide fiber: LD, laser diode; PM, phase modulator; EDFA, Er-doped fiber amplifier; IM, intensity modulator; VOA, variable optical attenuator; PD, photodiode; F-P: Fabry-Perot filter.

Fig. 2.
Fig. 2.

Time waveforms of the probe pulses for different Brillouin gain. Note that the negative gain (-10 dB) corresponds to the case of Brillouin loss.

Fig. 3.
Fig. 3.

(a) Amount of Brillouin gain as a function of the pump power in the 5-m As2Se3 fiber. (b) Time delay of the probe pulse as a function of Brillouin gain.

Fig. 4.
Fig. 4.

(a) Variation of the pulse width (FWHM) with respect to gain. (b) Variation of the time delay and the gain according to the detuning frequency (Δν) form νB (7.968 GHz). Note that the maximum gain was set to 20 dB and the pump power was not changed during the measurement.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g B = 2 π · n 7 · p 12 2 c λ 2 ρ · ν A · Δ ν B ,
FOM = G P pump · L eff · n ,

Metrics