Abstract

In this paper, field trial on optical code division multiplexing through the commercial-used fiber line is presented. We fabricated fiber Bragg grating en/decoders with time-spreading and wavelength-hopping scheme, considering environmental fluctuation of transmission fiber. 200 km-long transmission of 2-channel ×10 Gb/s signals was achieved on the field photonic network test bed of JGN II. Error free transmission was demonstrated in real field deployed single-mode transmission fiber.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kitayama, N. Wada, and H. Sotobayashi, "Architectural considerations for photonic IP router based upon optical code correlation," J. Lightwave Technol. 18, 1834-1844 (2000).
    [CrossRef]
  2. S.-J. Kim, T. J. Eom, T.-Y. Kim, B. H. Lee, and C.-S. Park, "Experimental demonstration of 2 x 10 Gb/s OCDMA system using cascaded long-period fiber gratings formed in dispersion compensating fiber," in Proceedings of Optical Fiber Communications Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2005, Paper JWA48 (2005).
  3. Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, "Four-User, 2.5-Gb/s, Spectrally Coded OCDMA System Demonstration Using Low-Power Nonlinear Processing," J. Lightwave Technol. 23, 143-158 (2005).
    [CrossRef]
  4. V. J. Hernandez, W. Cong, R. P. Scott, C. Yang, N. K. Fontaine, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, "320-Gb/s Capacity (32 Users x 10 Gb/s) SPECTS O-CDMA Local Area Network Testbed," Optical Fiber Communications Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2006, PD Paper PDP45 (2006).
  5. N. Wada, H. Sotobayashi, and K. Kitayama, "2.5 Gbit/s time -spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source," Electron. Lett. 36,815-817 (2000).
    [CrossRef]
  6. S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, "10 Gb/s x 2ch signal unrepeated transmission over 100km of data rate enhanced time-spread/wavelength-hoping OCDM using 2.5 Gb/s-FBG en/decoder," IEEE Photon. Technol. Lett. 15, 317-319 (2003).
    [CrossRef]
  7. H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, "Experimental study on time-spread wavelength-hop Optical code division multiplexing with group delay compensating en/decoder," IEEE Photon. Technol. Lett. 16, 335-337 (2004).
    [CrossRef]
  8. T. Miyazaki, M. Daikoku, I, Morita, T. Otani, Y. Nagao, M. Suzuki, and F. Kubota, " Stable 160-Gb/s DPSK transmission using a simple PMD compensator on the field photonic network test bed of JGN II," in Proceedings of 9th Optoelectronics and Communications Conference/3rd International Conference on Optical Internet (OECC/COIN 2004), Paper PD1-3 (2004).
  9. X. Wang, N. Wada, and K. Kitayama, "Inter-symbol interference and beat noise in flexible data-rate coherent OCDMA and the BER improvement by using optical thresholding," Opt. Express 13, 10469-10474 (2005)
    [CrossRef] [PubMed]
  10. G. W. Yoffe, P. A. Krug, F. Ouellette, and D. Thorncraft, "Temperature-compensated optical-fiber Bragg gratings," in Proceedings of Optical Fiber Communications Conference (OFC) ‘95, Paper WI4 (1995).
  11. H. Iwamura, N. Minato, H. Tamai, S. Oshiba, and A. Nishiki, " FBG based optical code en/decoder for long distance transmission without dispersion compensating devices," in Proceedings of Optical Fiber Communications Conference (OFC) 2004, Paper WK6 (2004).

2005 (2)

2004 (1)

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, "Experimental study on time-spread wavelength-hop Optical code division multiplexing with group delay compensating en/decoder," IEEE Photon. Technol. Lett. 16, 335-337 (2004).
[CrossRef]

2003 (1)

S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, "10 Gb/s x 2ch signal unrepeated transmission over 100km of data rate enhanced time-spread/wavelength-hoping OCDM using 2.5 Gb/s-FBG en/decoder," IEEE Photon. Technol. Lett. 15, 317-319 (2003).
[CrossRef]

2000 (2)

K. Kitayama, N. Wada, and H. Sotobayashi, "Architectural considerations for photonic IP router based upon optical code correlation," J. Lightwave Technol. 18, 1834-1844 (2000).
[CrossRef]

N. Wada, H. Sotobayashi, and K. Kitayama, "2.5 Gbit/s time -spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source," Electron. Lett. 36,815-817 (2000).
[CrossRef]

Fejer, M. M.

Iwamura, H.

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, "Experimental study on time-spread wavelength-hop Optical code division multiplexing with group delay compensating en/decoder," IEEE Photon. Technol. Lett. 16, 335-337 (2004).
[CrossRef]

Jiang, Z.

Kitayama, K.

X. Wang, N. Wada, and K. Kitayama, "Inter-symbol interference and beat noise in flexible data-rate coherent OCDMA and the BER improvement by using optical thresholding," Opt. Express 13, 10469-10474 (2005)
[CrossRef] [PubMed]

S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, "10 Gb/s x 2ch signal unrepeated transmission over 100km of data rate enhanced time-spread/wavelength-hoping OCDM using 2.5 Gb/s-FBG en/decoder," IEEE Photon. Technol. Lett. 15, 317-319 (2003).
[CrossRef]

K. Kitayama, N. Wada, and H. Sotobayashi, "Architectural considerations for photonic IP router based upon optical code correlation," J. Lightwave Technol. 18, 1834-1844 (2000).
[CrossRef]

N. Wada, H. Sotobayashi, and K. Kitayama, "2.5 Gbit/s time -spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source," Electron. Lett. 36,815-817 (2000).
[CrossRef]

Kutsuzawa, S.

S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, "10 Gb/s x 2ch signal unrepeated transmission over 100km of data rate enhanced time-spread/wavelength-hoping OCDM using 2.5 Gb/s-FBG en/decoder," IEEE Photon. Technol. Lett. 15, 317-319 (2003).
[CrossRef]

Langrock, C.

Leaird, D. E.

Minato, N.

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, "Experimental study on time-spread wavelength-hop Optical code division multiplexing with group delay compensating en/decoder," IEEE Photon. Technol. Lett. 16, 335-337 (2004).
[CrossRef]

S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, "10 Gb/s x 2ch signal unrepeated transmission over 100km of data rate enhanced time-spread/wavelength-hoping OCDM using 2.5 Gb/s-FBG en/decoder," IEEE Photon. Technol. Lett. 15, 317-319 (2003).
[CrossRef]

Nishiki, A.

S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, "10 Gb/s x 2ch signal unrepeated transmission over 100km of data rate enhanced time-spread/wavelength-hoping OCDM using 2.5 Gb/s-FBG en/decoder," IEEE Photon. Technol. Lett. 15, 317-319 (2003).
[CrossRef]

Oshiba, S.

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, "Experimental study on time-spread wavelength-hop Optical code division multiplexing with group delay compensating en/decoder," IEEE Photon. Technol. Lett. 16, 335-337 (2004).
[CrossRef]

S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, "10 Gb/s x 2ch signal unrepeated transmission over 100km of data rate enhanced time-spread/wavelength-hoping OCDM using 2.5 Gb/s-FBG en/decoder," IEEE Photon. Technol. Lett. 15, 317-319 (2003).
[CrossRef]

Roussev, R. V.

Seo, D. S.

Sotobayashi, H.

K. Kitayama, N. Wada, and H. Sotobayashi, "Architectural considerations for photonic IP router based upon optical code correlation," J. Lightwave Technol. 18, 1834-1844 (2000).
[CrossRef]

N. Wada, H. Sotobayashi, and K. Kitayama, "2.5 Gbit/s time -spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source," Electron. Lett. 36,815-817 (2000).
[CrossRef]

Tamai, H.

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, "Experimental study on time-spread wavelength-hop Optical code division multiplexing with group delay compensating en/decoder," IEEE Photon. Technol. Lett. 16, 335-337 (2004).
[CrossRef]

Wada, N.

Wang, X.

Weiner, A. M.

Yang, S.-D.

Electron. Lett. (1)

N. Wada, H. Sotobayashi, and K. Kitayama, "2.5 Gbit/s time -spread/wavelength-hop optical code division multiplexing using fibre Bragg grating with supercontinuum light source," Electron. Lett. 36,815-817 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Kutsuzawa, N. Minato, S. Oshiba, A. Nishiki, and K. Kitayama, "10 Gb/s x 2ch signal unrepeated transmission over 100km of data rate enhanced time-spread/wavelength-hoping OCDM using 2.5 Gb/s-FBG en/decoder," IEEE Photon. Technol. Lett. 15, 317-319 (2003).
[CrossRef]

H. Tamai, H. Iwamura, N. Minato, and S. Oshiba, "Experimental study on time-spread wavelength-hop Optical code division multiplexing with group delay compensating en/decoder," IEEE Photon. Technol. Lett. 16, 335-337 (2004).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (5)

G. W. Yoffe, P. A. Krug, F. Ouellette, and D. Thorncraft, "Temperature-compensated optical-fiber Bragg gratings," in Proceedings of Optical Fiber Communications Conference (OFC) ‘95, Paper WI4 (1995).

H. Iwamura, N. Minato, H. Tamai, S. Oshiba, and A. Nishiki, " FBG based optical code en/decoder for long distance transmission without dispersion compensating devices," in Proceedings of Optical Fiber Communications Conference (OFC) 2004, Paper WK6 (2004).

V. J. Hernandez, W. Cong, R. P. Scott, C. Yang, N. K. Fontaine, B. H. Kolner, J. P. Heritage, and S. J. B. Yoo, "320-Gb/s Capacity (32 Users x 10 Gb/s) SPECTS O-CDMA Local Area Network Testbed," Optical Fiber Communications Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2006, PD Paper PDP45 (2006).

S.-J. Kim, T. J. Eom, T.-Y. Kim, B. H. Lee, and C.-S. Park, "Experimental demonstration of 2 x 10 Gb/s OCDMA system using cascaded long-period fiber gratings formed in dispersion compensating fiber," in Proceedings of Optical Fiber Communications Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2005, Paper JWA48 (2005).

T. Miyazaki, M. Daikoku, I, Morita, T. Otani, Y. Nagao, M. Suzuki, and F. Kubota, " Stable 160-Gb/s DPSK transmission using a simple PMD compensator on the field photonic network test bed of JGN II," in Proceedings of 9th Optoelectronics and Communications Conference/3rd International Conference on Optical Internet (OECC/COIN 2004), Paper PD1-3 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

System configuration of field trial for 2-channel ×10 Gb/s OCDM transmission; (a) field photonic network test bed of JGN II, (b) OCDM-transmitter, and (c) OCDM-receiver.

Fig. 2.
Fig. 2.

Code patterns of encoders for (a) desired and (b) undesired channels.

Fig. 3.
Fig. 3.

Measured reflectivity and group delay (GD) of (a) FBG encoder for desired channel, (b) FBG encoder for undesired channel, and (c) FBG decoder.

Fig. 4.
Fig. 4.

Measured polarization dependency of an FBG encoder; (a) polarization dependent loss (PDL), and (b) differential group delay (DGD).

Fig. 5.
Fig. 5.

Eye diagrams of signals; (a) 10Gb/s PRBS signal before encoding, (b) encoded multiplexed signals without transmission, and (c) de-multiplexed signal after 200 km transmission with time gating.

Fig. 6.
Fig. 6.

Measured bit error rate. Filled circle: single-channel signal without encoding and transmission (back-to-back), filled triangle: De-multiplexed signal from 2-channel OCDM without transmission, and opened square: De-multiplexed signal from 2-channel OCDM with 200 km-long transmission.

Tables (1)

Tables Icon

Table 1. Averages of relative GD of all gratings; (a) FBG encoder for desired channel, (b) FBG encoder for undesired channel, and (c) FBG decoder.

Metrics