Abstract

Drawing of the hollow all-polymer Bragg fibers based on PMMA/PS and PVDF/PC materials combinations are demonstrated. Hole collapse during drawing effects the uniformity of a photonic crystal reflector in the resultant fiber. We first investigate how the hole collapse effects fiber transmission properties. We then present modelling of fluid dynamics of hollow multilayer polymer fiber drawing. Particularly, hole collapse during drawing and layer thickness non-uniformity are investigated as a function of draw temperature, draw ratio, feeding speed, core pressurization and mismatch of material properties in a multilayer. Both the newtonian and generalized newtonian cases are considered assuming slender geometries.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Katsuyama and H. Matsumura. Infrared Optical Fibers, (Adam Hilger, Bristol, England, 1989).
  2. M. Saito and K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 527–538 (1997).
    [CrossRef]
  3. J. Sanghera and I. Aggarwal. Infrared Fiber Optics, (CRC, Boca Raton, USA, 1998).
  4. S. Martellucci, A.N. Chester, and A.G. Mignani Optical Sensors and Microsystems : New Concepts, Materials, Technologies, 1st ed. (Springer, New York, USA, 2000).
  5. J.A. Harrington, “A review of IR transmitting, hollow waveguides,” Fib. Integr. Opt. 19, 211 (2000).
    [CrossRef]
  6. Y.W. Shi, K. Ito, Y. Matsuura, and M. Miyagi, “Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared,” Opt. Lett. 30, 2867–2869 (2005).
    [CrossRef] [PubMed]
  7. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef] [PubMed]
  8. J. Canning, E. Buckley, and K. Lyytikainen “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Opt. Lett. 28, 230–232 (2003).
    [CrossRef] [PubMed]
  9. J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Optics Communications 207, 35 (2002).
    [CrossRef]
  10. C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [CrossRef] [PubMed]
  11. H. Han, H. Park, M. Cho, and J. Kim “Terahertz pulse propagation in plastic photonic crystal fibers,” CLEO/Pac - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. 01TH8557, 22 (2001).
  12. J. Choi, K.Y. Kim, and U.C. Paek, POF - Proceedings of Plastic Optical Fibres, 355 (2001).
  13. M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
    [CrossRef]
  14. T. Katagiri, Y. Matsuura, and M. Miyagi, “Photonic bandgap fiber with a silica core and multilayer dielectric cladding,” Opt. Lett. 29, 557–559 (2004).
    [CrossRef] [PubMed]
  15. B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
    [CrossRef] [PubMed]
  16. G. Vienne, Y. Xu, C. Jakobsen, H.J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express 12, 3500–3508 (2004).
    [CrossRef] [PubMed]
  17. Alexander Argyros, Martijn A. van Eijkelenborg, Maryanne C. J. Large, and Ian M. Bassett, “Hollow-core microstructured polymer optical fiber,” Opt. Lett. 31, 172–174 (2006).
    [CrossRef] [PubMed]
  18. A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).
  19. M. Skorobogatiy, “Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector,” Opt. Lett. 30, 2991 (2005).
    [CrossRef] [PubMed]
  20. Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.
  21. M.R. Matovich and J.R.A. Pearson, “Spinning a molten threadline - Steady-state isothermal viscous flows,” Ind. Eng. Chem. Fundam. 8, 512–520 (1969).
    [CrossRef]
  22. Y.T. Shah and J.R.A. Pearson, “On the stability of nonisothermal fiber spinning,” Ind. Eng. Chem. Fundam. 11, 145–149 (1972).
    [CrossRef]
  23. J.A. Burgman “Liquid glass jets in the forming of continuous fibers,” Glass Technol. 11, 110–116 (1970).
  24. F.T. Geyling, “Basic fluid dynamic consideration in the drawing of optical fibers,” Bell Sys. Tech. J. 55, 1011–1056 (1976).
  25. B.D. Freeman, M.M. Denn, R. Keunings, G.E. Molau, and J. Ramos, “Profile development in drawn hollow tubes,” J. Polym. Eng. 6, 171–186 (1986).
    [CrossRef]
  26. A.D. Fitt, K. Furusawa, T.M. Monro, C.P. Please, and D.J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
    [CrossRef]
  27. K. Lyytikainen, J. Canning, J. Digweed, and J. Zagari, “Geometry control of air-silica structured optical fibres using pressurisation”, IMOC Proceedings, International Microwave and Optoelectronics Conference (Cat. No.03TH8678) 2, 1001–1005 (2003).
    [CrossRef]
  28. K. Lyytikainen. Control of complex structural geometry in optical fibre drawing, (Phd Thesis, University of Sydney, 2005).
  29. S.C. Xue, R.I. Tanner, G.W. Barton, R. Lwin, M.C.J. Large, and L. Poladian, “Fabrication of microstructured optical fibers Part I: Problem formulation and numerical modeling of transient draw process,” J. Lightwave Technol. 23, 2245–2254 (2005).
    [CrossRef]
  30. S.C. Xue, R.I. Tanner, G.W. Barton, R. Lwin, M.C.J. Large, and L. Poladian, “Fabrication of microstructured optical fibers Part II: Numerical modeling of steady-state draw process,” J. Lightwave Technol. 23, 2255–2266 (2005).
    [CrossRef]
  31. S.C. Xue, M.C.J. Large, G.W. Barton, R.I. Tanner, L. Poladian, and R. Lwin, “Role of material properties and drawing conditions in the fabrication of microstructured optical fibers,” J. Lightwave Technol. 24, 853–860 (2006).
    [CrossRef]
  32. Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748
    [CrossRef] [PubMed]
  33. L.J. Cummings and P.D. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” J. Fluid mech. 389, 361–389 (1999).
    [CrossRef]
  34. R.B. Bird, R.C. Amstrong, and O. Hassager. Dynamics of polymeric liquids, vol. 1, Fluid mechanics, (JohnWiley & Sons, New York, 1987).
  35. H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of steady-state drawing force and heat transfer in polymer optical fiber manufacturing,” J. Heat Transfer 126, 236–243 (2004).
    [CrossRef]
  36. S. Wu, “Surface and interfacial tensions of polymer melts. II. Poly(methylmethacrylate), poly(nbutylmethacrylate), and polystyrene,” J. Phys. Chem. 74, 632–638 (1970).
    [CrossRef]
  37. T. Sedlacek, M. Zatloukal, P. Filip, A. Boldizar, and P. Saha “On the effect of pressure on the shear and elongational viscosities of polymer melts,” Polymer eng. sci.,  44, 1328–1337 (2004).
    [CrossRef]

2006 (2)

2005 (4)

2004 (4)

T. Katagiri, Y. Matsuura, and M. Miyagi, “Photonic bandgap fiber with a silica core and multilayer dielectric cladding,” Opt. Lett. 29, 557–559 (2004).
[CrossRef] [PubMed]

G. Vienne, Y. Xu, C. Jakobsen, H.J. Deyerl, J. Jensen, T. Sorensen, T. Hansen, Y. Huang, M. Terrel, R. Lee, N. Mortensen, J. Broeng, H. Simonsen, A. Bjarklev, and A. Yariv, “Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports,” Opt. Express 12, 3500–3508 (2004).
[CrossRef] [PubMed]

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of steady-state drawing force and heat transfer in polymer optical fiber manufacturing,” J. Heat Transfer 126, 236–243 (2004).
[CrossRef]

T. Sedlacek, M. Zatloukal, P. Filip, A. Boldizar, and P. Saha “On the effect of pressure on the shear and elongational viscosities of polymer melts,” Polymer eng. sci.,  44, 1328–1337 (2004).
[CrossRef]

2003 (5)

K. Lyytikainen, J. Canning, J. Digweed, and J. Zagari, “Geometry control of air-silica structured optical fibres using pressurisation”, IMOC Proceedings, International Microwave and Optoelectronics Conference (Cat. No.03TH8678) 2, 1001–1005 (2003).
[CrossRef]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

J. Canning, E. Buckley, and K. Lyytikainen “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Opt. Lett. 28, 230–232 (2003).
[CrossRef] [PubMed]

2002 (3)

A.D. Fitt, K. Furusawa, T.M. Monro, C.P. Please, and D.J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Optics Communications 207, 35 (2002).
[CrossRef]

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

J.A. Harrington, “A review of IR transmitting, hollow waveguides,” Fib. Integr. Opt. 19, 211 (2000).
[CrossRef]

1999 (1)

L.J. Cummings and P.D. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” J. Fluid mech. 389, 361–389 (1999).
[CrossRef]

1997 (1)

M. Saito and K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 527–538 (1997).
[CrossRef]

1986 (1)

B.D. Freeman, M.M. Denn, R. Keunings, G.E. Molau, and J. Ramos, “Profile development in drawn hollow tubes,” J. Polym. Eng. 6, 171–186 (1986).
[CrossRef]

1976 (1)

F.T. Geyling, “Basic fluid dynamic consideration in the drawing of optical fibers,” Bell Sys. Tech. J. 55, 1011–1056 (1976).

1972 (1)

Y.T. Shah and J.R.A. Pearson, “On the stability of nonisothermal fiber spinning,” Ind. Eng. Chem. Fundam. 11, 145–149 (1972).
[CrossRef]

1970 (2)

J.A. Burgman “Liquid glass jets in the forming of continuous fibers,” Glass Technol. 11, 110–116 (1970).

S. Wu, “Surface and interfacial tensions of polymer melts. II. Poly(methylmethacrylate), poly(nbutylmethacrylate), and polystyrene,” J. Phys. Chem. 74, 632–638 (1970).
[CrossRef]

1969 (1)

M.R. Matovich and J.R.A. Pearson, “Spinning a molten threadline - Steady-state isothermal viscous flows,” Ind. Eng. Chem. Fundam. 8, 512–520 (1969).
[CrossRef]

Aggarwal, I.

J. Sanghera and I. Aggarwal. Infrared Fiber Optics, (CRC, Boca Raton, USA, 1998).

Allan, D.C.

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Amstrong, R.C.

R.B. Bird, R.C. Amstrong, and O. Hassager. Dynamics of polymeric liquids, vol. 1, Fluid mechanics, (JohnWiley & Sons, New York, 1987).

Argyros, A.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

Argyros, Alexander

Barton, G.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

Barton, G.W.

Bassett, I.M.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

Bassett, Ian M.

Benoit, G.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
[CrossRef] [PubMed]

Bird, R.B.

R.B. Bird, R.C. Amstrong, and O. Hassager. Dynamics of polymeric liquids, vol. 1, Fluid mechanics, (JohnWiley & Sons, New York, 1987).

Bjarklev, A.

Boldizar, A.

T. Sedlacek, M. Zatloukal, P. Filip, A. Boldizar, and P. Saha “On the effect of pressure on the shear and elongational viscosities of polymer melts,” Polymer eng. sci.,  44, 1328–1337 (2004).
[CrossRef]

Borrelli, N.F.

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Broeng, J.

Buckley, E.

J. Canning, E. Buckley, and K. Lyytikainen “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Opt. Lett. 28, 230–232 (2003).
[CrossRef] [PubMed]

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Optics Communications 207, 35 (2002).
[CrossRef]

Burgman, J.A.

J.A. Burgman “Liquid glass jets in the forming of continuous fibers,” Glass Technol. 11, 110–116 (1970).

Canning, J.

J. Canning, E. Buckley, and K. Lyytikainen “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Opt. Lett. 28, 230–232 (2003).
[CrossRef] [PubMed]

K. Lyytikainen, J. Canning, J. Digweed, and J. Zagari, “Geometry control of air-silica structured optical fibres using pressurisation”, IMOC Proceedings, International Microwave and Optoelectronics Conference (Cat. No.03TH8678) 2, 1001–1005 (2003).
[CrossRef]

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Optics Communications 207, 35 (2002).
[CrossRef]

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim “Terahertz pulse propagation in plastic photonic crystal fibers,” CLEO/Pac - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. 01TH8557, 22 (2001).

Choi, J.

J. Choi, K.Y. Kim, and U.C. Paek, POF - Proceedings of Plastic Optical Fibres, 355 (2001).

Cummings, L.J.

L.J. Cummings and P.D. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” J. Fluid mech. 389, 361–389 (1999).
[CrossRef]

Denn, M.M.

B.D. Freeman, M.M. Denn, R. Keunings, G.E. Molau, and J. Ramos, “Profile development in drawn hollow tubes,” J. Polym. Eng. 6, 171–186 (1986).
[CrossRef]

Deyerl, H.J.

Digweed, J.

K. Lyytikainen, J. Canning, J. Digweed, and J. Zagari, “Geometry control of air-silica structured optical fibres using pressurisation”, IMOC Proceedings, International Microwave and Optoelectronics Conference (Cat. No.03TH8678) 2, 1001–1005 (2003).
[CrossRef]

Dubois, C.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).

Dupuis, A.

A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).

Emery, A.F.

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of steady-state drawing force and heat transfer in polymer optical fiber manufacturing,” J. Heat Transfer 126, 236–243 (2004).
[CrossRef]

Engeness, Torkel D.

Fellew, M.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

Filip, P.

T. Sedlacek, M. Zatloukal, P. Filip, A. Boldizar, and P. Saha “On the effect of pressure on the shear and elongational viscosities of polymer melts,” Polymer eng. sci.,  44, 1328–1337 (2004).
[CrossRef]

Fink, Y.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
[CrossRef] [PubMed]

Fink, Yoel

Fitt, A.D.

A.D. Fitt, K. Furusawa, T.M. Monro, C.P. Please, and D.J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Freeman, B.D.

B.D. Freeman, M.M. Denn, R. Keunings, G.E. Molau, and J. Ramos, “Profile development in drawn hollow tubes,” J. Polym. Eng. 6, 171–186 (1986).
[CrossRef]

Furusawa, K.

A.D. Fitt, K. Furusawa, T.M. Monro, C.P. Please, and D.J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Gallagher, M.T.

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Gao, Y.

A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

Gauvreau, B.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

Geyling, F.T.

F.T. Geyling, “Basic fluid dynamic consideration in the drawing of optical fibers,” Bell Sys. Tech. J. 55, 1011–1056 (1976).

Godbout, N.

A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).

Guo, N.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).

Han, H.

H. Han, H. Park, M. Cho, and J. Kim “Terahertz pulse propagation in plastic photonic crystal fibers,” CLEO/Pac - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. 01TH8557, 22 (2001).

Hansen, T.

Harrington, J.A.

J.A. Harrington, “A review of IR transmitting, hollow waveguides,” Fib. Integr. Opt. 19, 211 (2000).
[CrossRef]

Hart, S.D.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
[CrossRef] [PubMed]

Hassager, O.

R.B. Bird, R.C. Amstrong, and O. Hassager. Dynamics of polymeric liquids, vol. 1, Fluid mechanics, (JohnWiley & Sons, New York, 1987).

Henry, G.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

Howell, P.D.

L.J. Cummings and P.D. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” J. Fluid mech. 389, 361–389 (1999).
[CrossRef]

Huang, Y.

Ibanescu, Mihai

Issa, N.A.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

Ito, K.

Jacobs, Steven A.

Jakobsen, C.

Jensen, J.

Joannopoulos, J. D.

Joannopoulos, J.D.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
[CrossRef] [PubMed]

Johnson, Steven G.

Katagiri, T.

Katsuyama, T.

T. Katsuyama and H. Matsumura. Infrared Optical Fibers, (Adam Hilger, Bristol, England, 1989).

Keunings, R.

B.D. Freeman, M.M. Denn, R. Keunings, G.E. Molau, and J. Ramos, “Profile development in drawn hollow tubes,” J. Polym. Eng. 6, 171–186 (1986).
[CrossRef]

Kikuchi, K.

M. Saito and K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 527–538 (1997).
[CrossRef]

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim “Terahertz pulse propagation in plastic photonic crystal fibers,” CLEO/Pac - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. 01TH8557, 22 (2001).

Kim, K.Y.

J. Choi, K.Y. Kim, and U.C. Paek, POF - Proceedings of Plastic Optical Fibres, 355 (2001).

Koch, K.W.

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Lacroix, S.

A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).

Large, M.C.J.

Large, Maryanne C. J.

Lee, R.

Lwin, R.

Lyttikainen, K.

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Optics Communications 207, 35 (2002).
[CrossRef]

Lyytikainen, K.

J. Canning, E. Buckley, and K. Lyytikainen “Propagation in air by field superposition of scattered light within a Fresnel fiber,” Opt. Lett. 28, 230–232 (2003).
[CrossRef] [PubMed]

K. Lyytikainen, J. Canning, J. Digweed, and J. Zagari, “Geometry control of air-silica structured optical fibres using pressurisation”, IMOC Proceedings, International Microwave and Optoelectronics Conference (Cat. No.03TH8678) 2, 1001–1005 (2003).
[CrossRef]

K. Lyytikainen. Control of complex structural geometry in optical fibre drawing, (Phd Thesis, University of Sydney, 2005).

Manos, S.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

Martinu, L.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

Matovich, M.R.

M.R. Matovich and J.R.A. Pearson, “Spinning a molten threadline - Steady-state isothermal viscous flows,” Ind. Eng. Chem. Fundam. 8, 512–520 (1969).
[CrossRef]

Matsumura, H.

T. Katsuyama and H. Matsumura. Infrared Optical Fibers, (Adam Hilger, Bristol, England, 1989).

Matsuura, Y.

Mescher, A.M.

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of steady-state drawing force and heat transfer in polymer optical fiber manufacturing,” J. Heat Transfer 126, 236–243 (2004).
[CrossRef]

Miyagi, M.

Molau, G.E.

B.D. Freeman, M.M. Denn, R. Keunings, G.E. Molau, and J. Ramos, “Profile development in drawn hollow tubes,” J. Polym. Eng. 6, 171–186 (1986).
[CrossRef]

Monro, T.M.

A.D. Fitt, K. Furusawa, T.M. Monro, C.P. Please, and D.J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Mortensen, N.

Muller, D.

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Padden, W.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

Paek, U.C.

J. Choi, K.Y. Kim, and U.C. Paek, POF - Proceedings of Plastic Optical Fibres, 355 (2001).

Park, H.

H. Han, H. Park, M. Cho, and J. Kim “Terahertz pulse propagation in plastic photonic crystal fibers,” CLEO/Pac - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. 01TH8557, 22 (2001).

Pearson, J.R.A.

Y.T. Shah and J.R.A. Pearson, “On the stability of nonisothermal fiber spinning,” Ind. Eng. Chem. Fundam. 11, 145–149 (1972).
[CrossRef]

M.R. Matovich and J.R.A. Pearson, “Spinning a molten threadline - Steady-state isothermal viscous flows,” Ind. Eng. Chem. Fundam. 8, 512–520 (1969).
[CrossRef]

Please, C.P.

A.D. Fitt, K. Furusawa, T.M. Monro, C.P. Please, and D.J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Poladian, L.

Pone, E.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).

Rajabian, M.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

Ramos, J.

B.D. Freeman, M.M. Denn, R. Keunings, G.E. Molau, and J. Ramos, “Profile development in drawn hollow tubes,” J. Polym. Eng. 6, 171–186 (1986).
[CrossRef]

Reeve, H.M.

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of steady-state drawing force and heat transfer in polymer optical fiber manufacturing,” J. Heat Transfer 126, 236–243 (2004).
[CrossRef]

Richardson, D.J.

A.D. Fitt, K. Furusawa, T.M. Monro, C.P. Please, and D.J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Ryan, T.

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Optics Communications 207, 35 (2002).
[CrossRef]

Saha, P.

T. Sedlacek, M. Zatloukal, P. Filip, A. Boldizar, and P. Saha “On the effect of pressure on the shear and elongational viscosities of polymer melts,” Polymer eng. sci.,  44, 1328–1337 (2004).
[CrossRef]

Saito, M.

M. Saito and K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 527–538 (1997).
[CrossRef]

Sanghera, J.

J. Sanghera and I. Aggarwal. Infrared Fiber Optics, (CRC, Boca Raton, USA, 1998).

Sedlacek, T.

T. Sedlacek, M. Zatloukal, P. Filip, A. Boldizar, and P. Saha “On the effect of pressure on the shear and elongational viscosities of polymer melts,” Polymer eng. sci.,  44, 1328–1337 (2004).
[CrossRef]

Shah, Y.T.

Y.T. Shah and J.R.A. Pearson, “On the stability of nonisothermal fiber spinning,” Ind. Eng. Chem. Fundam. 11, 145–149 (1972).
[CrossRef]

Shi, Y.W.

Simonsen, H.

Skorobogata, O.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

Skorobogatiy, M.

M. Skorobogatiy, “Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector,” Opt. Lett. 30, 2991 (2005).
[CrossRef] [PubMed]

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748 (2001), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748
[CrossRef] [PubMed]

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).

Smith, C.M.

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Soljacic, Marin

Sorensen, T.

Tanner, R.I.

Temelkuran, B.

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
[CrossRef] [PubMed]

Terrel, M.

van Eijkelenborg, M.A.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

van Eijkelenborg, Martijn A.

Venkataraman, N.

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Vienne, G.

Weisberg, Ori

West, J.A.

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

Wu, S.

S. Wu, “Surface and interfacial tensions of polymer melts. II. Poly(methylmethacrylate), poly(nbutylmethacrylate), and polystyrene,” J. Phys. Chem. 74, 632–638 (1970).
[CrossRef]

Xu, Y.

Xue, S.C.

Yariv, A.

Zabeida, O.

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

Zagari, J.

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

K. Lyytikainen, J. Canning, J. Digweed, and J. Zagari, “Geometry control of air-silica structured optical fibres using pressurisation”, IMOC Proceedings, International Microwave and Optoelectronics Conference (Cat. No.03TH8678) 2, 1001–1005 (2003).
[CrossRef]

Zatloukal, M.

T. Sedlacek, M. Zatloukal, P. Filip, A. Boldizar, and P. Saha “On the effect of pressure on the shear and elongational viscosities of polymer melts,” Polymer eng. sci.,  44, 1328–1337 (2004).
[CrossRef]

Bell Sys. Tech. J. (1)

F.T. Geyling, “Basic fluid dynamic consideration in the drawing of optical fibers,” Bell Sys. Tech. J. 55, 1011–1056 (1976).

Fib. Integr. Opt. (1)

J.A. Harrington, “A review of IR transmitting, hollow waveguides,” Fib. Integr. Opt. 19, 211 (2000).
[CrossRef]

Glass Technol. (1)

J.A. Burgman “Liquid glass jets in the forming of continuous fibers,” Glass Technol. 11, 110–116 (1970).

IMOC Proceedings, International Microwave and Optoelectronics Conference (Cat. No.03TH8678) (1)

K. Lyytikainen, J. Canning, J. Digweed, and J. Zagari, “Geometry control of air-silica structured optical fibres using pressurisation”, IMOC Proceedings, International Microwave and Optoelectronics Conference (Cat. No.03TH8678) 2, 1001–1005 (2003).
[CrossRef]

Ind. Eng. Chem. Fundam. (2)

M.R. Matovich and J.R.A. Pearson, “Spinning a molten threadline - Steady-state isothermal viscous flows,” Ind. Eng. Chem. Fundam. 8, 512–520 (1969).
[CrossRef]

Y.T. Shah and J.R.A. Pearson, “On the stability of nonisothermal fiber spinning,” Ind. Eng. Chem. Fundam. 11, 145–149 (1972).
[CrossRef]

J. Eng. Math. (1)

A.D. Fitt, K. Furusawa, T.M. Monro, C.P. Please, and D.J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[CrossRef]

J. Fluid mech. (1)

L.J. Cummings and P.D. Howell, “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” J. Fluid mech. 389, 361–389 (1999).
[CrossRef]

J. Heat Transfer (1)

H.M. Reeve, A.M. Mescher, and A.F. Emery, “Investigation of steady-state drawing force and heat transfer in polymer optical fiber manufacturing,” J. Heat Transfer 126, 236–243 (2004).
[CrossRef]

J. Lightwave Technol. (3)

J. Phys. Chem. (1)

S. Wu, “Surface and interfacial tensions of polymer melts. II. Poly(methylmethacrylate), poly(nbutylmethacrylate), and polystyrene,” J. Phys. Chem. 74, 632–638 (1970).
[CrossRef]

J. Polym. Eng. (1)

B.D. Freeman, M.M. Denn, R. Keunings, G.E. Molau, and J. Ramos, “Profile development in drawn hollow tubes,” J. Polym. Eng. 6, 171–186 (1986).
[CrossRef]

Nature (2)

C.M. Smith, N. Venkataraman, M.T. Gallagher, D. Muller, J.A. West, N.F. Borrelli, D.C. Allan, and K.W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[CrossRef] [PubMed]

B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Fiber Techn. (1)

M.A. van Eijkelenborg, A. Argyros, G. Barton, I.M. Bassett, M. Fellew, G. Henry, N.A. Issa, M.C.J. Large, S. Manos, W. Padden, L. Poladian, and J. Zagari, “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199–209 (2003).
[CrossRef]

Opt. Lett. (5)

Opt. Rev. (1)

M. Saito and K. Kikuchi, “Infrared optical fiber sensors,” Opt. Rev. 4, 527–538 (1997).
[CrossRef]

Optics Communications (1)

J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, “Wavelength dependent leakage in a Fresnel-based air-silica structured optical fibre,” Optics Communications 207, 35 (2002).
[CrossRef]

Polymer eng. sci. (1)

T. Sedlacek, M. Zatloukal, P. Filip, A. Boldizar, and P. Saha “On the effect of pressure on the shear and elongational viscosities of polymer melts,” Polymer eng. sci.,  44, 1328–1337 (2004).
[CrossRef]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef] [PubMed]

Other (9)

R.B. Bird, R.C. Amstrong, and O. Hassager. Dynamics of polymeric liquids, vol. 1, Fluid mechanics, (JohnWiley & Sons, New York, 1987).

A. Dupuis, Y. Gao, N. Guo, E. Pone, N. Godbout, S. Lacroix, C. Dubois, and M. Skorobogatiy “Biodegradable, Double-Core, Porous Optical Fiber,” CLEO - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. CPDB5, (2006).

J. Sanghera and I. Aggarwal. Infrared Fiber Optics, (CRC, Boca Raton, USA, 1998).

S. Martellucci, A.N. Chester, and A.G. Mignani Optical Sensors and Microsystems : New Concepts, Materials, Technologies, 1st ed. (Springer, New York, USA, 2000).

Y. Gao, N. Guo, B. Gauvreau, M. Rajabian, O. Skorobogata, E. Pone, O. Zabeida, L. Martinu, C. Dubois, and M. Skorobogatiy, “Consecutive Solvent Evaporation and Co-Rolling Techniques for Polymer Multilayer Hollow Fiber Preform Fabrication,” to appear in september issue of the J. Materials Research, 2006.

H. Han, H. Park, M. Cho, and J. Kim “Terahertz pulse propagation in plastic photonic crystal fibers,” CLEO/Pac - Conference on Lasers and Electro-Optics, postdeadline paper Cat. No. 01TH8557, 22 (2001).

J. Choi, K.Y. Kim, and U.C. Paek, POF - Proceedings of Plastic Optical Fibres, 355 (2001).

K. Lyytikainen. Control of complex structural geometry in optical fibre drawing, (Phd Thesis, University of Sydney, 2005).

T. Katsuyama and H. Matsumura. Infrared Optical Fibers, (Adam Hilger, Bristol, England, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

a) Left - 30cm long all-polymer preform with 10 consecutive PMMA/PS layers deposited on the inside of a PMMA cladding tube. Right - PMMA/PS preform cross section. b) Left - 30cm long all-polymer preform with 15 consecutive PVDF/PC layers deposited on the inside of a PC cladding tube. Right - PVDF/PC preform cross section c) Left - end part of a rolled 19 layer PVDF/PC preform. Middle - cross section of a drawn PVDF/PC fiber with a 1:20 drawdown ratio. Right - cross section of a drawn PMMA/PS fiber with a 1:20 drawdown ratio.

Fig. 2.
Fig. 2.

a) Radiation loss of the bandgap guided TE 01 core modes for the high index-contrast (2.0/1.5) air filled fibers with different hole collapse ratios C r , while the same outside radii Roft . Hole collapse leads to the shift of a bandgap center into the longer wavelength, as well as to a considerable increase in the modal radiation losses. b) Radiation losses of the bandgap guided TE 01 and HE 11 core modes for the low index-contrast (1.6/1.4) water filled fibers with different hole collapse ratios.

Fig. 3.
Fig. 3.

Schematic of a hollow multilayer preform during drawing. Different colors correspond to different materials in a multilayer.

Fig. 4.
Fig. 4.

Temperature distribution in the furnace.

Fig. 5.
Fig. 5.

(a) Hole collapse parameter Cr as a function of the draw ratio D r for different temperatures. Solid lines correspond to multilayer preform. Dotted lines correspond to a simple tube with the same thickness as the multilayer preform. Dashed lines represent the curves of a constant outside diameter. (b) Ratio h o /h i between the inner and outer layer thicknesses as a function of the draw ratio for different temperatures.

Fig. 6.
Fig. 6.

Effect of mismatch in the viscosities of materials in a multilayer on hole collapse (solid lines), and layer non-uniformity (dotted lines). Maximum furnace temperature is T=190°C, draw ratio D r =30000. (a) Effects of η 0. (b) Effects of (T 0-T 0, PMMA )/T 0, PMMA .

Fig. 7.
Fig. 7.

The hole collapse and thickness non-uniformity as a function of the hole overpressure and feeding speed. Maximal furnace temperature is T=190°C and draw ratio D r =5000. (a) Effects of hole overpressure P i . (b) Effects of feeding speed V f .

Fig. 8.
Fig. 8.

a) Comparison between Newtonian and generalized Newtonian model. Solid lines correspond to generalized Newtonian model and dotted lines to Newtonian model. b) Viscosity distribution in the furnace for different draw ratios at T=180°C. Solid lines correspond to generalized Newtonian model and dotted line to Newtonian model.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

( r f ) 2 = ( r p D ) 2 ( 1 C r 2 ) ( R i p D ) 2 ( R o p ) 2 ( r p ) 2 ( R o p ) 2 ( R i p ) 2 .
1 r ( r v r ) r + v z z = 0
ρ ( v r v r r + v z v r z ) = p r + 1 r ( r τ rr ) r τ θ θ r + τ rz z
ρ ( v r v z r + v z v z z ) = p z + 1 r ( r τ rz ) r τ zz z + ρ g
σ i j = p δ i j + τ i j
v r = R j v z at r = R j
σ ̿ · n i = ( γ κ i P i ) n i
σ ̿ · t i = 0
κ i = 1 R i ( 1 + R i 2 ) 1 2 R i " ( 1 + R i 2 ) 3 2
n i T = ( n r , n θ , n z ) = ( 1 1 + R i 2 , 0 , R i 1 + R i 2 ) ,
t i T = ( n z , 0 , n r )
σ ̿ · n o = γ κ o n o
σ ̿ · t o = 0
φ ¯ ( z ) = 1 π ( R o 2 R i 2 ) R i R o 2 π r φ ( r , z ) d r
σ rr = γ R i P i
σ rz = ( γ R i + P i ) R i at r = R i
σ zz = ( γ R i P i ) R i 2
σ rr = γ R o
σ rz = γ R o R o at r = R o
σ zz = γ R o R o 2
p ¯ = τ ¯ rr + τ ¯ θ θ 2 + γ ( R o + R i ) R i 2 P i R o 2 R i 2
ρ ¯ Q v z = [ Q v z ( τ ¯ z z τ ¯ r r + τ ¯ θ θ 2 ) + γ ( R o + R i ) ] + ρ ¯ g Q v z
τ ̿ = η ( r , z ) ( v + v T )
v r = r v z 2 + A r
τ ̿ = ( η ( v z + 2 A r 2 ) 0 0 0 η ( v z 2 A r 2 ) 0 0 0 2 η v z )
τ ¯ z z τ ¯ r r + τ ¯ θ θ 2 = 3 η ¯ v z
ρ ¯ Q v z = [ 3 η ¯ Q v z v z + γ ( R o + R i ) ] + ρ ¯ g Q v z
A = P i γ ( 1 R i + 1 R o ) 4 R i R o η ( r ) r 3 d r
( R j 2 v z ) = 2 A
η ¯ v z v z = C
v z ( z ) = exp ( ln V f + 0 z d z η ¯ ( z ) 0 L d z η ¯ ( z ) ln V d V f )
η ( T ) = η 0 exp [ α ( 1 T 1 T 0 ) ]
η ( T , I I D ) = η 0 f [ 1 + ( K 1 f 2 I I D ) a ] 1 n a

Metrics