Abstract

Air hole 2D photonic crystals (PhC) and air slots have been used in association with semiconductor ridge waveguides to produce highly compact beam-splitters (less than 10 µm×10 µm) for power or polarization separators and mirrors. An efficiency of 99% (in both 2D and 3D formulations) has been obtained for the power beam-splitter using finitedifference time-domain (FDTD) simulations-and around 95% has been measured experimentally for structures realized in silicon-on-insulator (SOI) waveguides. In the polarization splitter, an extinction ratio as large as 11 dB was also reached experimentally. Examples of combinations of these elements in the form of interferometers are also presented.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature 383,699-702 (1996).
    [CrossRef]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
    [CrossRef]
  3. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol. 17,1682-1692 (1999).
    [CrossRef]
  4. G. P. Nordin, S. Kim, J. Cai, and J. Jiang, "Hybrid integration of conventional waveguide and photonic crystal structures," Opt. Express 10,1334-1341 (2002).
    [PubMed]
  5. L. Li, G. P. Nordin, J. M. English, and J. Jiang, "Small-area bends and beamsplitters for low-index-contrast waveguides," Opt. Express 11,282-290 (2003).
    [CrossRef] [PubMed]
  6. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, "Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure," Opt. Lett. 28,2384-2386 (2003).
    [CrossRef] [PubMed]
  7. S. Kim, G. P. Nordin, J. Jiang, and J. Cai, "Microgenetic algorithm design of hybrid conventional waveguide and photonic crystal structures," Opt. Eng. 43,2143-2149 (2004).
    [CrossRef]
  8. S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, "Dispersion-based beam splitter in photonic crystals," Opt. Lett. 29,617-619 (2004).
    [CrossRef] [PubMed]
  9. L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, "Planar photonic crystal polarization splitter," Opt. Lett. 29,1620-1622 (2004).
    [CrossRef] [PubMed]
  10. G. Erwin, A. C. Bryce, and R. M. De La Rue, "Low-threshold oxide-confined compact edge-emitting semiconductor laser diodes with high-reflectivity 1D photonic crystal mirrors," in International Congress on Optics and Optoelectronics (ICOO), K. M. Abramski, A. Lapucci, E. F. Plinski; eds., Proc. SPIE 5958,96-102 (2005).
  11. M. Gnan, "Systematic investigation of mis-alignment effects at photonic crystal channel waveguide to feeder waveguide junctions," Degree Thesis, Università degli Studi di Bologna, Facoltà di Ingegneria (2003).

2005 (1)

G. Erwin, A. C. Bryce, and R. M. De La Rue, "Low-threshold oxide-confined compact edge-emitting semiconductor laser diodes with high-reflectivity 1D photonic crystal mirrors," in International Congress on Optics and Optoelectronics (ICOO), K. M. Abramski, A. Lapucci, E. F. Plinski; eds., Proc. SPIE 5958,96-102 (2005).

2004 (3)

2003 (2)

2002 (1)

1999 (1)

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
[CrossRef]

1996 (1)

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature 383,699-702 (1996).
[CrossRef]

Brand, S.

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature 383,699-702 (1996).
[CrossRef]

Bryce, A. C.

G. Erwin, A. C. Bryce, and R. M. De La Rue, "Low-threshold oxide-confined compact edge-emitting semiconductor laser diodes with high-reflectivity 1D photonic crystal mirrors," in International Congress on Optics and Optoelectronics (ICOO), K. M. Abramski, A. Lapucci, E. F. Plinski; eds., Proc. SPIE 5958,96-102 (2005).

Cai, J.

Chen, C.

De La Rue, R. M.

G. Erwin, A. C. Bryce, and R. M. De La Rue, "Low-threshold oxide-confined compact edge-emitting semiconductor laser diodes with high-reflectivity 1D photonic crystal mirrors," in International Congress on Optics and Optoelectronics (ICOO), K. M. Abramski, A. Lapucci, E. F. Plinski; eds., Proc. SPIE 5958,96-102 (2005).

L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, "Planar photonic crystal polarization splitter," Opt. Lett. 29,1620-1622 (2004).
[CrossRef] [PubMed]

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature 383,699-702 (1996).
[CrossRef]

English, J. M.

Erwin, G.

G. Erwin, A. C. Bryce, and R. M. De La Rue, "Low-threshold oxide-confined compact edge-emitting semiconductor laser diodes with high-reflectivity 1D photonic crystal mirrors," in International Congress on Optics and Optoelectronics (ICOO), K. M. Abramski, A. Lapucci, E. F. Plinski; eds., Proc. SPIE 5958,96-102 (2005).

Fan, S.

Fan, S. H.

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
[CrossRef]

Gallet, J.-F.

Haus, H. A.

Jiang, J.

Joannopoulos, J. D.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol. 17,1682-1692 (1999).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
[CrossRef]

Johnson, S. G.

Jugessur, A.

Kim, S.

Krauss, T. F.

L. Wu, M. Mazilu, J.-F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, "Planar photonic crystal polarization splitter," Opt. Lett. 29,1620-1622 (2004).
[CrossRef] [PubMed]

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature 383,699-702 (1996).
[CrossRef]

Li, L.

Manolatou, C.

Mazilu, M.

Nordin, G. P.

Prather, D. W.

Pustai, D. M.

Sharkawy, A.

Shi, S.

Villeneuve, P. R.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol. 17,1682-1692 (1999).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
[CrossRef]

Wu, L.

J. Lightwave Technol. (1)

Nature (2)

T. F. Krauss, R. M. De La Rue, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature 383,699-702 (1996).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Photonic crystals: putting a new twist on light," Nature 386,143-149 (1997);J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, "Erratum: Photonic crystals: putting a new twist on light," Nature 387,830 (1997).
[CrossRef]

Opt. Eng. (1)

S. Kim, G. P. Nordin, J. Jiang, and J. Cai, "Microgenetic algorithm design of hybrid conventional waveguide and photonic crystal structures," Opt. Eng. 43,2143-2149 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

G. Erwin, A. C. Bryce, and R. M. De La Rue, "Low-threshold oxide-confined compact edge-emitting semiconductor laser diodes with high-reflectivity 1D photonic crystal mirrors," in International Congress on Optics and Optoelectronics (ICOO), K. M. Abramski, A. Lapucci, E. F. Plinski; eds., Proc. SPIE 5958,96-102 (2005).

Other (1)

M. Gnan, "Systematic investigation of mis-alignment effects at photonic crystal channel waveguide to feeder waveguide junctions," Degree Thesis, Università degli Studi di Bologna, Facoltà di Ingegneria (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

(a) to (d): one-to four-port configuration beam-processing elements. (a): frontal mirror, (b): 45° mirror, (c): power or polarization splitter, (d): power splitter for interferometer.

Fig. 2.
Fig. 2.

Vertical layer configuration, with refractive indices and layers thicknesses, after dry etching has taken place. On the top right are depicted holes, waveguides or slots etched down to the depth d.

Fig. 3.
Fig. 3.

List of devices studied, classified by function and technology used, with schematics.

Fig. 4.
Fig. 4.

Transmission, reflection and back-reflection of a PhC beam-splitter (without lateral confinement), vs. the normalized frequency a/λ, for a set of filling-factors (f) ranging from 0.25 to 0.75 by step of 0.05, for TM polarization (2D FDTD simulations).

Fig. 5.
Fig. 5.

Intensity map of the field (a) and transmission, reflection and back-reflection (b) of a PhC beam-splitter, vs. the normalized frequency a/λ, for TM polarization (2D FDTD simulations, a=0.22 µm, f=0.60). (N.B.: the additional air holes drawn outside the waveguides-air region-have no effect.)

Fig. 6.
Fig. 6.

Evolution of the transmission, reflection and back-reflection of a PhC beam-splitter, vs. the area filling-factor, for TM and TE polarizations (3D FDTD simulations, a=0.22 µm, λ=1.518 µm).

Fig. 7.
Fig. 7.

Evolution of the transmission, reflection and back-reflection of an air slot beam-splitter, vs. the slot width, for TM and TE polarizations (3D FDTD simulations, λ=1.518 µm).

Fig. 8.
Fig. 8.

Transmission for TE & TM polarization (a), and transmission (for TE) & reflection (for TM) (b), vs. the normalized frequency a/λ, of a PhC polarization splitter (2D FDTD simulations, a=0.429 µm, f=0.35 (a), and a=0.506 µm, f=0.25 (b)).

Fig. 9.
Fig. 9.

Reflection vs. the normalized frequency a/λ, for TM and TE polarization, of a PhC mirror (2D FDTD simulations, a=0.541 µm, f=0.35).

Fig. 10.
Fig. 10.

Reflection vs. wavelength, for TM and TE polarization, of a total internal reflection mirror (3D FDTD simulations). Inset: intensity map of the field (TE polarization). (N.B.: the lines drawn outside the corner waveguide have no effect.)

Fig. 11.
Fig. 11.

Reflection vs. wavelength, for TM and TE polarization, of a corner reflector frontal mirror (3D FDTD simulations). Inset: intensity map of the field (TE polarization). The light is launched upwards at z=0. Picture taken at a maximum of the standing wave occurring above z=0. (N.B.: the lines drawn outside the beveled waveguide have no effect.)

Fig. 12.
Fig. 12.

Intensity map of the field of a Michelson interferometer (2D FDTD simulation). The light is launched upwards at z=-3. Arms are numbered from 1 to 4. (N.B.: the additional air holes drawn outside the waveguides-air region-have no effect.)

Fig. 13.
Fig. 13.

Transmission (in output arm 4) and reflection (back to input arm 1) of the Michelson interferometer vs. the mirror position p (2D FDTD simulations).

Fig. 14.
Fig. 14.

Intensity map of the field of a Mach-Zehnder interferometer (2D FDTD simulation). The light is launched upwards at z=-3. (N.B.: the additional air holes drawn outside the waveguides-air region-have no effect; the lines drawn outside the corner waveguides have no effect neither.)

Fig. 15.
Fig. 15.

SEM micrographs of the power (a) and polarization (b) splitter on SOI ridge waveguides (T-junction).

Fig. 16.
Fig. 16.

Experimental (raw and filtered data) and simulated (3D FDTD) transmission and reflection spectra of the PhC power splitter, for TM (a) and TE (b) polarizations (a=0.220 µm, f=0.30).

Fig. 17.
Fig. 17.

Experimental (raw and filtered data) and simulated (3D FDTD) transmission and reflection spectra of the PhC polarization splitter, for TM (a) and TE (b) polarizations (a=0.400 µm, f=0.30).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

a λ < 1 n eff ( 1 + sin θ ) = ( a λ ) c

Metrics