Abstract

Ground based high-contrast imaging (e.g. extrasolar giant planet detection) has demanding wavefront control requirements two orders of magnitude more precise than standard adaptive optics systems. We demonstrate that these requirements can be achieved with a 1024-Micro-Electrical-Mechanical-Systems (MEMS) deformable mirror having an actuator spacing of 340 µm and a stroke of approximately 1 µm, over an active aperture 27 actuators across. We have flattened the mirror to a residual wavefront error of 0.54 nm rms within the range of controllable spatial frequencies. Individual contributors to final wavefront quality, such as voltage response and uniformity, have been identified and characterized.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Marcy, "California and Carnegie Planet Search," U.C. Berkeley (2005). http://exoplanets.org.
  2. C. H. Lineweaver and D. Grether, "What fraction of sun-like stars have planets?" Ap. J. 598, 1350-1360.
  3. A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
    [CrossRef]
  4. B. Macintosh, J. Graham, B. Oppenheimer, L. Poyneer, A. Sivaramakrishnan, and J.-P. Veran, "MEMS-based extreme adaptive optics for planet detection," in MEMS/MOEMS Components and thier Applications III, S. S. Olivier, S. A. Tadigadapa, and A. K. Henning, eds., Proc. SPIE 6113, pp. 48-57 (2006).
  5. A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, and B. A. Macintosh, "Speckle decorrelation and dynamic range in speckle noise-limited imaging," Astrophysical J. 581, L59-62 (2002).
    [CrossRef]
  6. T. Bifano, P. Bierden, and J. Perreault, "Micromachined Deformable Mirrors for Dynamic Wavefront Control," in Advanced Wavefront Control:Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, and M. K. Giles, eds., Proc. SPIE 5553, pp. 1-16 (2004).
  7. N. Doble, G. Yoon, L. Chen, P. Bierden, S. Oliver, and D. R. Williams, "Use of a microelectricalmechanical mirror for adaptive optics in the human eye," Opt. Lett. 27, 1537-1539 (2002).
    [CrossRef]
  8. K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Krulevitch, J. Crawford, and O. Azucena, "High-speed horizontal-path atmospheric turbulence correction with a large-actuator-number mircoelectricalmechanical system spatial light modulator in an interferometric phase-conjugation engine," Opt. Lett. 29, 1781-1783 (2004).
    [CrossRef] [PubMed]
  9. K. L. Baker, E. A. Stappaerts, D. Gavel, S. C. Wilks, J. Tucker, D. A. Silva, J. Olsen, S. S. Olivier, P. E. Young, M. W. Kartz, L. M. Flath, P. Krulevitch, J. Crawford, and O. Azucena, "Breadboard testing of a phase-conjugate engine with an interferometric wave-front sensor and a microelectricalmechanical systems-based spatial light modulator," Appl. Opt. 43, 5585-5593 (2004).
    [CrossRef] [PubMed]
  10. G. Vdovin, P. M. Sarro, and S. Middelhoek, "Technology and applications of micromachined adaptive mirrors," J. Micromech. Microeng. 9, R8-R20.
  11. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, S. Browne, P. Kervin, J. Snodgrass, N. Heimann,M. Shilko, R. Pohle, B. Carrion, C. Smith, and D. Thiel, "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites." Opt. Express 10, 1508-1519 (2002).
    [PubMed]
  12. J. Trauger, D. Moody, B. Gordon, Y. G¨ursel, M. Ealey, and R. Bagwell, "Performance of a precision high-density deformable mirror for extremely high contrast imaging astronomy from Sapce," in Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation, J. C. Blades and O. H. W. Siegmund, eds., Proc. SPIE 4854, pp. 1-8 (2003).
  13. J. W. Evans, G. Sommargren, B. A. Macintosh, S. Severson, and D. Dillon, "Effect of Wavefront Error on 10−7 Contrast Measurements," Opt. Lett. 31, 565-567 (2006).
    [CrossRef] [PubMed]
  14. G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, "100-picometer interferometry for EUVL," in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE 4688, pp. 316-328 (2002).
  15. J. W. Evans, G. Sommargren, L. Poyneer, B. Macintosh, S. Severson, D. Dillon, A. Shenis, D. Palmer, J. Kasdin, and S. Olivier, "Extreme Adaptive Optics Testbed: Results and Future Work," in Advancements in Adaptive Optics, D. B. Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE 5490, pp. 954-959 (2004).
  16. J. W. Evans, K. Morzinski, L. Reza, S. Severson, L. Poyneer, B. Macintosh, D. Dillon, G. Sommargren, D. Palmer, D. Gavel, and S. Olivier, "Extreme Adaptive Optics Testbed: High Contrast Measurements with a MEMS Deformable Mirror," in Techniques and Instrumentation for Detection of Exoplanets II, D. R. Coulter, ed., Proc. SPIE 5905, pp. 303-310 (2005).
  17. J. W. Evans, K. Morzinski, S. Severson, L. Poyneer, B. Macintosh, D. Dillon, L. Reza, D. Gavel, D. Palmer, S. Olivier, and P. Birden, "Extreme Adaptive Optics Testbed: Performance and Charachterization of a 1024-MEMS deformable mirror," in MEMS/MOEMS Components and their applications III, S. Olivier, ed., Proc. SPIE 6113, pp. 131-136 (2006).
  18. L. A. Poyneer and B. Macintosh, "Experimental demonstration of phase correction with a 32 x 32 microelectricalmechanical systems mirror and a spatially filtered wavefront sensor," J. Opt. Soc. Am. A 21, 810-819 (2004).
    [CrossRef]
  19. H. R. Shea, A. Gasparyan, C. D. White, R. B. Comizzoli, D. Abushch-Magder, and S. Arney, "Anodic Oxidation and Reliability of MEMS Poly-Silicon Electrodes at High Relative Humidity and High Voltages," in MEMS Reliability for Critical Applications, R. A. Lawton, ed., Proc. SPIE 4180, pp. 117-122 (2000).
  20. F. Malbet, J. Yu, and M. Shao, "High Dynamic Range Imaging Using a Deformable Mirror for Space Coronography," Publications Of The Astronomical Society of the Pacific 107, 386-398 (1995).
    [CrossRef]
  21. L. A. Poyneer, B. Bauman, B. A. Macintosh, D. Dillon, and S. Severson, "Spatially filtered wave-front sensor for high-order adaptive optics," Opt. Lett. 31, 293-295 (2006).
    [CrossRef] [PubMed]

2006 (2)

2004 (3)

2002 (3)

1997 (1)

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

1995 (1)

F. Malbet, J. Yu, and M. Shao, "High Dynamic Range Imaging Using a Deformable Mirror for Space Coronography," Publications Of The Astronomical Society of the Pacific 107, 386-398 (1995).
[CrossRef]

Azucena, O.

Baker, K. L.

Bauman, B.

Bierden, P.

Browne, S.

Burrows, A.

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

Carrion, B.

Chen, L.

Crawford, J.

Dayton, D.

Dillon, D.

Doble, N.

Evans, J. W.

Flath, L. M.

Freedman, R.

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

Gavel, D.

Gonglewski, J.

Grether, D.

C. H. Lineweaver and D. Grether, "What fraction of sun-like stars have planets?" Ap. J. 598, 1350-1360.

Guillot, T.

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

Hartman, M.

Heimann, N.

Hodge, P. E.

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, and B. A. Macintosh, "Speckle decorrelation and dynamic range in speckle noise-limited imaging," Astrophysical J. 581, L59-62 (2002).
[CrossRef]

Hubbard, W. B.

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

Kartz, M. W.

Kervin, P.

Krulevitch, P.

Lineweaver, C. H.

C. H. Lineweaver and D. Grether, "What fraction of sun-like stars have planets?" Ap. J. 598, 1350-1360.

Lloyd, J. P.

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, and B. A. Macintosh, "Speckle decorrelation and dynamic range in speckle noise-limited imaging," Astrophysical J. 581, L59-62 (2002).
[CrossRef]

Lunine, J. I.

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

Macintosh, B.

Macintosh, B. A.

Malbet, F.

F. Malbet, J. Yu, and M. Shao, "High Dynamic Range Imaging Using a Deformable Mirror for Space Coronography," Publications Of The Astronomical Society of the Pacific 107, 386-398 (1995).
[CrossRef]

Marley, M.

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

Martin, J.

Oliver, S.

Olivier, S. S.

Olsen, J.

Phillips, J.

Pohle, R.

Poyneer, L. A.

Restaino, S.

Saumon, D.

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

Severson, S.

Shao, M.

F. Malbet, J. Yu, and M. Shao, "High Dynamic Range Imaging Using a Deformable Mirror for Space Coronography," Publications Of The Astronomical Society of the Pacific 107, 386-398 (1995).
[CrossRef]

Sharp, C.

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

Shilko, M.

Silva, D. A.

Sivaramakrishnan, A.

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, and B. A. Macintosh, "Speckle decorrelation and dynamic range in speckle noise-limited imaging," Astrophysical J. 581, L59-62 (2002).
[CrossRef]

Smith, C.

Snodgrass, J.

Sommargren, G.

Stappaerts, E. A.

Sudarsky, D.

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

Thiel, D.

Tucker, J.

Wilks, S. C.

Williams, D. R.

Yoon, G.

Young, P. E.

Yu, J.

F. Malbet, J. Yu, and M. Shao, "High Dynamic Range Imaging Using a Deformable Mirror for Space Coronography," Publications Of The Astronomical Society of the Pacific 107, 386-398 (1995).
[CrossRef]

Ap. J. (1)

C. H. Lineweaver and D. Grether, "What fraction of sun-like stars have planets?" Ap. J. 598, 1350-1360.

Appl. Opt. (1)

Astrophysical J. (2)

A. Burrows, M. Marley, W. B. Hubbard, J. I. Lunine, T. Guillot, D. Saumon, R. Freedman, D. Sudarsky, and C. Sharp, "A nongray theory of extrasolar giant planets and brown dwarfs," Astrophysical J. 491, 856-875 (1997).
[CrossRef]

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, and B. A. Macintosh, "Speckle decorrelation and dynamic range in speckle noise-limited imaging," Astrophysical J. 581, L59-62 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (4)

Publications Of The Astronomical Society of the Pacific (1)

F. Malbet, J. Yu, and M. Shao, "High Dynamic Range Imaging Using a Deformable Mirror for Space Coronography," Publications Of The Astronomical Society of the Pacific 107, 386-398 (1995).
[CrossRef]

Other (10)

G. W. Marcy, "California and Carnegie Planet Search," U.C. Berkeley (2005). http://exoplanets.org.

B. Macintosh, J. Graham, B. Oppenheimer, L. Poyneer, A. Sivaramakrishnan, and J.-P. Veran, "MEMS-based extreme adaptive optics for planet detection," in MEMS/MOEMS Components and thier Applications III, S. S. Olivier, S. A. Tadigadapa, and A. K. Henning, eds., Proc. SPIE 6113, pp. 48-57 (2006).

T. Bifano, P. Bierden, and J. Perreault, "Micromachined Deformable Mirrors for Dynamic Wavefront Control," in Advanced Wavefront Control:Methods, Devices and Applications II, J. D. Gonglewski, M. T. Gruineisen, and M. K. Giles, eds., Proc. SPIE 5553, pp. 1-16 (2004).

G. Vdovin, P. M. Sarro, and S. Middelhoek, "Technology and applications of micromachined adaptive mirrors," J. Micromech. Microeng. 9, R8-R20.

J. Trauger, D. Moody, B. Gordon, Y. G¨ursel, M. Ealey, and R. Bagwell, "Performance of a precision high-density deformable mirror for extremely high contrast imaging astronomy from Sapce," in Future EUV/UV and Visible Space Astrophysics Missions and Instrumentation, J. C. Blades and O. H. W. Siegmund, eds., Proc. SPIE 4854, pp. 1-8 (2003).

G. E. Sommargren, D. W. Phillion, M. A. Johnson, N. Q. Nguyen, A. Barty, F. J. Snell, D. R. Dillon, and L. S. Bradsher, "100-picometer interferometry for EUVL," in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE 4688, pp. 316-328 (2002).

J. W. Evans, G. Sommargren, L. Poyneer, B. Macintosh, S. Severson, D. Dillon, A. Shenis, D. Palmer, J. Kasdin, and S. Olivier, "Extreme Adaptive Optics Testbed: Results and Future Work," in Advancements in Adaptive Optics, D. B. Calia, B. L. Ellerbroek, and R. Ragazzoni, eds., Proc. SPIE 5490, pp. 954-959 (2004).

J. W. Evans, K. Morzinski, L. Reza, S. Severson, L. Poyneer, B. Macintosh, D. Dillon, G. Sommargren, D. Palmer, D. Gavel, and S. Olivier, "Extreme Adaptive Optics Testbed: High Contrast Measurements with a MEMS Deformable Mirror," in Techniques and Instrumentation for Detection of Exoplanets II, D. R. Coulter, ed., Proc. SPIE 5905, pp. 303-310 (2005).

J. W. Evans, K. Morzinski, S. Severson, L. Poyneer, B. Macintosh, D. Dillon, L. Reza, D. Gavel, D. Palmer, S. Olivier, and P. Birden, "Extreme Adaptive Optics Testbed: Performance and Charachterization of a 1024-MEMS deformable mirror," in MEMS/MOEMS Components and their applications III, S. Olivier, ed., Proc. SPIE 6113, pp. 131-136 (2006).

H. R. Shea, A. Gasparyan, C. D. White, R. B. Comizzoli, D. Abushch-Magder, and S. Arney, "Anodic Oxidation and Reliability of MEMS Poly-Silicon Electrodes at High Relative Humidity and High Voltages," in MEMS Reliability for Critical Applications, R. A. Lawton, ed., Proc. SPIE 4180, pp. 117-122 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Simplified schematic of interferometry mode on the ExAO testbed. A physical aperture can be placed in front of the MEMS but during closed loop operation a software aperture is used.

Fig. 2.
Fig. 2.

The 1024 actuator MEMS device made by Boston Micromachines Corporation, shown on the testbed with a penny for scale.

Fig. 3.
Fig. 3.

Stroke of a device measured with 0, 110, and 160 volt bias for an individual or group of actuators. More stroke is achieved when actuators move together without a bias voltage.

Fig. 4.
Fig. 4.

Irregular actuators are identified for the working region of three MEMS devices. Red indicates a no-response actuator, yellow a ‘working’ irregular actuator, and white is a normal actuator. The Nov 2004 device had limited performance due to the number of irregular actuators and was operated over a smaller aperture because of the number and placement of no-response actuators. There has been a dramatic improvement in both yield and uniformity in the Feb and Oct 2005 devices. The two no-response actuators in the top middle of all three devices are wired to ground.

Fig. 5.
Fig. 5.

Voltage response of two coupled actuators tested individually and together, with a bias voltage of 110 volts.

Fig. 6.
Fig. 6.

Curve of growth for stability data. Of the 500 actuators tested 97% stability of better than 0.16 nm (standard deviation of surface over 60 measurements taken in 38 minutes).

Fig. 7.
Fig. 7.

Wavefronts taken before and after a closed loop test with a 9.2 mm aperture. The initial wavefront has an RMS WFE of 148 nm, while the flattened wavefront has 12.8 nm total RMS wavefront error, which is mostly errors on the scale on an individual actuator. Inside the controlled range of spatial frequencies the rms wavefront error is 0.54 nm. This is seen more clearly in the lowpass filtered image (far right).

Fig. 8.
Fig. 8.

Power spectrum generated from wavefronts taken before and after flattening. The 27 actuators across the aperture yield a highest controllable spatial frequency of 13.5 cycles per aperture. The bump at 27 cycles per aperture corresponds to physical structures on the MEMS at the scale of the individual actuator spacing.

Fig. 9.
Fig. 9.

Far field image simulated from the wavefront measurement shown in Fig.7. Diffraction has been suppressed with a symmetric blackman apodization for illustrating the effect of high spatial frequency errors like print-through on the image.

Tables (1)

Tables Icon

Table 1. Error budget for best flattening result over a 9.2 mm aperture within controllable spatial frequencies. The experimental residual WFE is 0.54 nm rms within controllable spatial frequencies and corresponds well to the error budget.

Metrics