Abstract

We present an experimental observation on spectrum evolution of femtosecond pulses in filamentation by introducing a hollow fiber as a probe and moving it along the filament. The results show that at a particular position of the filament, the pulse spectrum from the hollow fiber expands to its maximum, which corresponds to the shortest pulse duration existing in the filament. The influence of gas pressure on the spectrum broadening is also examined.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipcs, K. Ferencz, Ch. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett. 22, 522-524 (1997).
    [CrossRef] [PubMed]
  2. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, "Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation," Opt. Lett. 28, 2258-2260 (2003).
    [CrossRef] [PubMed]
  3. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, "Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum," Opt. Lett. 28, 1987-1989 (2003).
    [CrossRef] [PubMed]
  4. K. Yamane, T. Kito, R. Morita and M. Yamashita, "2.8-fs transform-limited optical-pulse generation in the monocycle region," in Conf. Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2004), post deadline paper PDC2.
  5. J. H. Sung, J. Y.  Park, T.  Imran, Y. S.  Lee, and C. H.  Nam, "Generation of 0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor," Appl. Phys. B 82, 5-8 (2006).
    [CrossRef]
  6. C. Hauri, A. Guandalini, P. Eckle, W. Kornelis, J. Biegert, and U. Keller, "Generation of intense few-cycle laser pulses through filamentation-parameter dependence," Opt. Express 13, 7541-7547 (2005).
    [CrossRef] [PubMed]
  7. A. Couairon, S. Tzortzakis, L. Bergé, M. Franco, B. Prade, and A. Mysyrowicz, "Infrared femtosecond light filaments in air: simulations and experiments," J. Opt. Soc. Am. B 19, 1117-1131 (2002).
  8. N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902 (2004).
    [CrossRef] [PubMed]
  9. G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, "Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament," Opt. Lett. 31, 274-276 (2006).
    [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1995).

2006

J. H. Sung, J. Y.  Park, T.  Imran, Y. S.  Lee, and C. H.  Nam, "Generation of 0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor," Appl. Phys. B 82, 5-8 (2006).
[CrossRef]

G. Stibenz, N. Zhavoronkov, and G. Steinmeyer, "Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament," Opt. Lett. 31, 274-276 (2006).
[CrossRef] [PubMed]

2005

2004

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902 (2004).
[CrossRef] [PubMed]

2003

2002

1997

Bergé, L.

Biegert, J.

Christov, I. P.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902 (2004).
[CrossRef] [PubMed]

Couairon, A.

De Silvestri, S.

Eckle, P.

Ferencz, K.

Franco, M.

Gibson, E. A.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902 (2004).
[CrossRef] [PubMed]

Guandalini, A.

Hauri, C.

Imran, T.

J. H. Sung, J. Y.  Park, T.  Imran, Y. S.  Lee, and C. H.  Nam, "Generation of 0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor," Appl. Phys. B 82, 5-8 (2006).
[CrossRef]

Kapteyn, H. C.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902 (2004).
[CrossRef] [PubMed]

Keller, U.

Kornelis, W.

Krausz, F.

Lee, Y. S.

J. H. Sung, J. Y.  Park, T.  Imran, Y. S.  Lee, and C. H.  Nam, "Generation of 0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor," Appl. Phys. B 82, 5-8 (2006).
[CrossRef]

Morita, R.

Murnane, M. M.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902 (2004).
[CrossRef] [PubMed]

Mysyrowicz, A.

Nam, C. H.

J. H. Sung, J. Y.  Park, T.  Imran, Y. S.  Lee, and C. H.  Nam, "Generation of 0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor," Appl. Phys. B 82, 5-8 (2006).
[CrossRef]

Nisoli, M.

Oka, K.

Park, J. Y.

J. H. Sung, J. Y.  Park, T.  Imran, Y. S.  Lee, and C. H.  Nam, "Generation of 0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor," Appl. Phys. B 82, 5-8 (2006).
[CrossRef]

Popmintchev, T.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902 (2004).
[CrossRef] [PubMed]

Prade, B.

Sansone, G.

Sartania, S.

Schenkel, B.

Spielmann, Ch.

Stagira, S.

Steinmeyer, G.

Stibenz, G.

Suguro, A.

Sung, J. H.

J. H. Sung, J. Y.  Park, T.  Imran, Y. S.  Lee, and C. H.  Nam, "Generation of 0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor," Appl. Phys. B 82, 5-8 (2006).
[CrossRef]

Svelto, O.

Szipcs, R.

Tzortzakis, S.

Vozzi, C.

Wagner, N. L.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902 (2004).
[CrossRef] [PubMed]

Yamane, K.

Yamashita, M.

Zhang, Z.

Zhavoronkov, N.

Appl. Phys. B

J. H. Sung, J. Y.  Park, T.  Imran, Y. S.  Lee, and C. H.  Nam, "Generation of 0.2-TW 5.5-fs optical pulses at 1 kHz using a differentially pumped hollow-fiber chirped-mirror compressor," Appl. Phys. B 82, 5-8 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

N. L. Wagner, E. A. Gibson, T. Popmintchev, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping," Phys. Rev. Lett. 93, 173902 (2004).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1995).

K. Yamane, T. Kito, R. Morita and M. Yamashita, "2.8-fs transform-limited optical-pulse generation in the monocycle region," in Conf. Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2004), post deadline paper PDC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. z is the distance from the beginning of the filament to the input of the hollow fiber; AMP is the commercial laser system (Spectra-Physics Spitfire 50fs-1K-HP); M1, M2 and M3 are silver-coated plane mirror; M4 is a silver-coated mirror with 2m radius of curvature; SP is the spectrometer (Ocean Optics, SD2000); hollow fiber is 18 cm in length and 420 µm in inner diameter.

Fig. 2.
Fig. 2.

Measured spectra of the filament with and without the hollow fiber probe.

Fig. 3.
Fig. 3.

Measured spectra as the hollow fiber was moved along the filamentation under the gas pressure of 3.0 atm. The legends in the figure represent the distance from the beginning of the filament to the input of the hollow fiber z=0 cm, z=1 cm, z=2 cm, z=3 cm, z=4 cm.

Fig. 4.
Fig. 4.

Measured spectra as the hollow fiber was moved along the filamentation under the gas pressure of 2.5 atm. The legends in the figure represent the distance from the beginning of the filament to the input of the hollow fiber z=0 cm, z=1 cm, z=2 cm, z=3 cm, z=4 cm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ ω = 0.86 γ P 0 z eff τ 0

Metrics