Abstract

Metamaterial structures are artificial materials that show unconventional electromagnetic properties such as photonic band-gap, extraordinary optical transmission and left-handed propagation. Up to now, relations of photonic crystals and negative refraction have been shown as well as of photonic crystals and sub-wavelength hole arrays. Here we report a left-handed metamaterial engineered by a combination of sub-wavelength hole array plates periodically stacked to form a photonic crystal structure. It is shown the possibility of fine-tuning the metamaterial in order to permit extraordinary optical transmission and left-handed behaviour. Our work demonstrates the feasibility of engineering left-handed metamaterials by just drilling holes in metallic plates and brings together single structure photonic crystals, extraordinary optical transmission and left-handed behaviour.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
    [CrossRef]
  4. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [CrossRef] [PubMed]
  5. T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  6. H.J. Lezec, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  7. L. Martín-Moreno, et al., “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
    [CrossRef] [PubMed]
  9. J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  10. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  11. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp 10, 509–514 (1968).
    [CrossRef]
  12. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  13. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
    [CrossRef] [PubMed]
  14. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [CrossRef]
  15. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [CrossRef] [PubMed]
  16. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2005).
    [CrossRef]
  17. D. R. Smith, “How to build a superlens,” Science 308, 502–503 (2005).
    [CrossRef] [PubMed]
  18. F. Falcone, et al., “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett.93, 197401-1-4 (2004).
    [CrossRef]
  19. A. N. Grigorenko, et al. “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
    [CrossRef] [PubMed]
  20. R. Sambles, “Gold loses its lustre,” Nature 438, 295–296 (2005).
    [CrossRef] [PubMed]
  21. M. Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron. 34, 133–143 (2002).
    [CrossRef]
  22. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves-negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
    [CrossRef] [PubMed]
  23. Y-H Ye and J-Y Zhang, “Enhanced light transmission through cascaded metal films perforated with periodic hole arrays,” Opt. Lett. 30, 1521–1523 (2005).
    [CrossRef] [PubMed]
  24. M. Qiu, “Photonic band structures for surface waves on structured metal surfaces,” Opt. Express 13, 7583–7588 (2005).
    [CrossRef] [PubMed]
  25. A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative, slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2271 (2003).
    [CrossRef]
  26. A. Alu and N. Engheta, “Evanescent growth and tunneling through stacks of frequency-selective surfaces,” IEEE Antennas Wirel. Propag. Lett., 0177–2005 (2005).
  27. G. Gomez-Santos, “Universal features of the time evolution of evanescent modes in a left-handed perfect lens,” Phys. Rev. Lett. 90, 077401-1-4 (2003).
    [CrossRef]
  28. M. Beruete, et al., “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
    [CrossRef] [PubMed]
  29. M. Beruete, et al., “Enhanced millimetre wave transmission through quasioptical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1902 (2005).
    [CrossRef]
  30. M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
    [CrossRef]
  31. J. Schwinger, J., and D. E. Saxon, Discontinuities in Waveguides, Notes on Lectures by Julian Schwinger (Gordon and Breach, New York, 1968).
  32. S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, Third Edition, 1994).
  33. M. Beruete, I. Campillo, and M. Sorolla, “Molding left-or right-handed metamaterials by stacked cut-off metallic hole arrays,” submitted to IEEE Trans. Antennas Propag.

2006 (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

2005 (8)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2005).
[CrossRef]

D. R. Smith, “How to build a superlens,” Science 308, 502–503 (2005).
[CrossRef] [PubMed]

A. N. Grigorenko, et al. “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[CrossRef] [PubMed]

R. Sambles, “Gold loses its lustre,” Nature 438, 295–296 (2005).
[CrossRef] [PubMed]

Y-H Ye and J-Y Zhang, “Enhanced light transmission through cascaded metal films perforated with periodic hole arrays,” Opt. Lett. 30, 1521–1523 (2005).
[CrossRef] [PubMed]

M. Qiu, “Photonic band structures for surface waves on structured metal surfaces,” Opt. Express 13, 7583–7588 (2005).
[CrossRef] [PubMed]

M. Beruete, et al., “Enhanced millimetre wave transmission through quasioptical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1902 (2005).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[CrossRef]

2004 (2)

M. Beruete, et al., “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

2003 (4)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves-negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative, slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2271 (2003).
[CrossRef]

G. Gomez-Santos, “Universal features of the time evolution of evanescent modes in a left-handed perfect lens,” Phys. Rev. Lett. 90, 077401-1-4 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[CrossRef] [PubMed]

2002 (2)

H.J. Lezec, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

M. Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron. 34, 133–143 (2002).
[CrossRef]

2001 (2)

L. Martín-Moreno, et al., “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

2000 (2)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp 10, 509–514 (1968).
[CrossRef]

Alu, A.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative, slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2271 (2003).
[CrossRef]

A. Alu and N. Engheta, “Evanescent growth and tunneling through stacks of frequency-selective surfaces,” IEEE Antennas Wirel. Propag. Lett., 0177–2005 (2005).

Aydin, K.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves-negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[CrossRef] [PubMed]

Beruete, M.

M. Beruete, et al., “Enhanced millimetre wave transmission through quasioptical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1902 (2005).
[CrossRef]

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[CrossRef]

M. Beruete, et al., “Enhanced millimetre wave transmission through subwavelength hole arrays,” Opt. Lett. 29, 2500–2502 (2004).
[CrossRef] [PubMed]

M. Beruete, I. Campillo, and M. Sorolla, “Molding left-or right-handed metamaterials by stacked cut-off metallic hole arrays,” submitted to IEEE Trans. Antennas Propag.

Campillo, I.

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[CrossRef]

M. Beruete, I. Campillo, and M. Sorolla, “Molding left-or right-handed metamaterials by stacked cut-off metallic hole arrays,” submitted to IEEE Trans. Antennas Propag.

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves-negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[CrossRef] [PubMed]

Dolado, J.S.

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Engheta, N.

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative, slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2271 (2003).
[CrossRef]

A. Alu and N. Engheta, “Evanescent growth and tunneling through stacks of frequency-selective surfaces,” IEEE Antennas Wirel. Propag. Lett., 0177–2005 (2005).

Falcone, F.

F. Falcone, et al., “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett.93, 197401-1-4 (2004).
[CrossRef]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves-negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

García-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Ghaemi, H.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Gomez-Santos, G.

G. Gomez-Santos, “Universal features of the time evolution of evanescent modes in a left-handed perfect lens,” Phys. Rev. Lett. 90, 077401-1-4 (2003).
[CrossRef]

Grigorenko, A. N.

A. N. Grigorenko, et al. “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

J.,

J. Schwinger, J., and D. E. Saxon, Discontinuities in Waveguides, Notes on Lectures by Julian Schwinger (Gordon and Breach, New York, 1968).

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Lezec, H.J.

H.J. Lezec, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, et al., “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Noda, S.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron. 34, 133–143 (2002).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves-negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Qiu, M.

Ramo, S.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, Third Edition, 1994).

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Sambles, R.

R. Sambles, “Gold loses its lustre,” Nature 438, 295–296 (2005).
[CrossRef] [PubMed]

Saxon, D. E.

J. Schwinger, J., and D. E. Saxon, Discontinuities in Waveguides, Notes on Lectures by Julian Schwinger (Gordon and Breach, New York, 1968).

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Schwinger, J.

J. Schwinger, J., and D. E. Saxon, Discontinuities in Waveguides, Notes on Lectures by Julian Schwinger (Gordon and Breach, New York, 1968).

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2005).
[CrossRef]

D. R. Smith, “How to build a superlens,” Science 308, 502–503 (2005).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

Sorolla, M.

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[CrossRef]

M. Beruete, I. Campillo, and M. Sorolla, “Molding left-or right-handed metamaterials by stacked cut-off metallic hole arrays,” submitted to IEEE Trans. Antennas Propag.

Soukoulis, C. M.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves-negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Van Duzer, T.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, Third Edition, 1994).

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp 10, 509–514 (1968).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

Whinnery, J. R.

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, Third Edition, 1994).

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2005).
[CrossRef]

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Ye, Y-H

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Zhang, J-Y

IEEE Microwave Wirel. Compon. Lett. (1)

M. Beruete, M. Sorolla, I. Campillo, and J.S. Dolado, “Increase of the transmission in cut-off metallic hole arrays,” IEEE Microwave Wirel. Compon. Lett. 15, 116–118 (2005).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative, slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2271 (2003).
[CrossRef]

M. Beruete, et al., “Enhanced millimetre wave transmission through quasioptical subwavelength perforated plates,” IEEE Trans. Antennas Propag. 53, 1897–1902 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[CrossRef]

Nature (7)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–829 (2003).
[CrossRef] [PubMed]

A. N. Grigorenko, et al. “Nanofabricated media with negative permeability at visible frequencies,” Nature 438, 335–338 (2005).
[CrossRef] [PubMed]

R. Sambles, “Gold loses its lustre,” Nature 438, 295–296 (2005).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Electromagnetic waves-negative refraction by photonic crystals,” Nature 423, 604–605 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

M. Notomi, “Negative refraction in photonic crystals,” Opt. Quantum Electron. 34, 133–143 (2002).
[CrossRef]

Phys. Rev. Lett. (6)

L. Martín-Moreno, et al., “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

G. Gomez-Santos, “Universal features of the time evolution of evanescent modes in a left-handed perfect lens,” Phys. Rev. Lett. 90, 077401-1-4 (2003).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76, 4773–4776 (1996).
[CrossRef] [PubMed]

Science (6)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2005).
[CrossRef]

D. R. Smith, “How to build a superlens,” Science 308, 502–503 (2005).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

H.J. Lezec, et al., “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Sov. Phys. Usp (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Sov. Phys. Usp 10, 509–514 (1968).
[CrossRef]

Other (5)

F. Falcone, et al., “Babinet principle applied to metasurface and metamaterial design,” Phys. Rev. Lett.93, 197401-1-4 (2004).
[CrossRef]

A. Alu and N. Engheta, “Evanescent growth and tunneling through stacks of frequency-selective surfaces,” IEEE Antennas Wirel. Propag. Lett., 0177–2005 (2005).

J. Schwinger, J., and D. E. Saxon, Discontinuities in Waveguides, Notes on Lectures by Julian Schwinger (Gordon and Breach, New York, 1968).

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics (John Wiley & Sons, Third Edition, 1994).

M. Beruete, I. Campillo, and M. Sorolla, “Molding left-or right-handed metamaterials by stacked cut-off metallic hole arrays,” submitted to IEEE Trans. Antennas Propag.

Supplementary Material (4)

» Media 1: GIF (599 KB)     
» Media 2: GIF (395 KB)     
» Media 3: GIF (512 KB)     
» Media 4: GIF (541 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Picture and dimensions of the photonic crystal made of stacked sub-wavelength metallic hole arrays surrounded of the test bench millimetre wave absorbing material. The number of holes is 54×54 in each plate, being a=2.5 mm, w=0.5 mm, dx=dy=d=5 mm, and dz=2.25 mm.

Fig. 2.
Fig. 2.

(a) Measured logarithmic transmission coefficient normalized to the maximum magnitude for N=2 (black), N=3 (red), and N=4 (blue) stacked plates, (b) measured phase varying the number of sub-wavelength hole array plates, N=2 (black), N=3 (red), and N=4 (blue) in the LHM band, and (c) the same as in (b) in the RHM band.

Fig. 3.
Fig. 3.

Simulated dispersion diagrams for photonic crystal made by stacking (a) subwavelength hole arrays with dz=2.25 mm, (b) sub-wavelength hole arrays with dz=2.75 mm. (c) First band for sub-wavelength hole arrays structures with different longitudinal periods, dz. (d) Simulated dispersion diagrams for photonic crystal made by stacking propagating hole arrays with dz=2.25 mm.

Fig. 4.
Fig. 4.

(600 KB each movie) Movies corresponding to the highlighted points (a, b, c and d) in Fig. 3. Movies S1 and S2 correspond to the first band and band-gap of the metamaterial made of sub-wavelength hole arrays (points a and b in Fig. 3(a), respectively) with dz=2.25 mm, whereas movie S3 corresponds to the first band of the metamaterial made sub-wavelength hole arrays but with dz=2.75 mm (point c in Fig. 3(b)). Finally, movie S4 shows electric field propagation at the first band of the photonic crystal made of propagating hole arrays (point d in Fig. 3(d)). Notice that the structures are infinite in the “x” and “y” dimensions and only the unit cell is shown. [Media 1] [Media 2] [Media 3] [Media 4]

Fig. 5.
Fig. 5.

Simulations for the cases of single sub-wavelength hole array structure (a) in the first band (EOT band) at 57.3 GHz. Single propagating hole array structure (b) at 53.5 GHz. Subwavelength hole array structure with 11 stacked plates spaced dz=2.25 mm (c) at 57.3 GHz. Propagating hole array structure with 11 stacked plates spaced dz=2.25 mm (d) at 53.5 GHz. Sub-wavelength hole array structure with 11 stacked plates spaced dz=2.75 mm (e) at 54.6 GHz and (f) inside the band gap at 57.3 GHz.

Metrics