Abstract

We have designed a compact dual wavelength multi-channel time-resolved system for functional near infrared spectroscopy. The system enables 16 sources and up to 64 collection points, with a minimum acquisition time of 5 ms per channel. Performances of the system have been tested on tissue phantoms in terms of linearity, noise, stability and reproducibility. Preliminary measurements on volunteers have been performed to validate the instrument capability to acquire in vivo maps of the hemodynamic parameters in the muscle during arterial occlusion and in the adult head during a finger tapping experiment.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
    [CrossRef] [PubMed]
  2. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
    [CrossRef] [PubMed]
  3. H. Obrig and A. Villringer, “Beyond the Visible—Imaging the Human Brain With Light,” J. Cereb. Blood Flow Metab. 23, 1–18 (2003).
    [CrossRef]
  4. A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light”, Phys. Today 48, 34–40 (1995).
    [CrossRef]
  5. A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends in Neurosci. 20, 435–442 (1997).
    [CrossRef]
  6. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
    [CrossRef] [PubMed]
  7. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  8. M. S. Patterson, J. D. Moulton, B. C. Wilson, K. W. Berndt, and J. R. Lakowicz, “Frequency-domain reflectance for the determination of the scattering and absorption properties of tissue,” Appl. Opt. 30, 4474–4476 (1991).
    [CrossRef] [PubMed]
  9. F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model for light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159–2166 (2005).
    [CrossRef] [PubMed]
  10. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
    [CrossRef] [PubMed]
  11. S. Del Bianco, F. Martelli, and G. Zaccanti “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–44 (2002).
    [CrossRef] [PubMed]
  12. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed Opt. 10, 11013 (2005).
    [CrossRef] [PubMed]
  13. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
    [CrossRef] [PubMed]
  14. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”, Appl. Opt. 38, 3670–3680 (1999).
    [CrossRef]
  15. A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
    [CrossRef] [PubMed]
  16. V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study,” J. Biomed. Opt. 10, 011012 (2005).
    [CrossRef]
  17. D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
    [CrossRef]
  18. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994).
    [CrossRef]
  19. Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1023 (1997).
    [CrossRef] [PubMed]
  20. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
    [CrossRef] [PubMed]
  21. S. Prahl, Oregon Medical Laser Center website (2001), http://omlc.ogi.edu/spectra.
  22. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
    [CrossRef]
  23. W. Louiselle, Quantum Statistical Properties of Radiation (Wiley, New York, 1974).
  24. C. Zint, W. Uhring, M. Torregrossa, B. Cunin, and P. Poulet, “Streak Camera: A Multidetector for Diffuse Optical Tomography,” Appl. Opt. 42, 3313–3320 (2003).
    [CrossRef] [PubMed]
  25. C. Abrahamsson, T. Svensson, S. Svanberg, and S. Andersson-Engels, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12, 4103–4112 (2004).
    [CrossRef] [PubMed]
  26. R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, “A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements,” J. Opt. A: Pure Appl. Opt. 6, 736–741 (2004).
    [CrossRef]
  27. C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
    [CrossRef]
  28. G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 15, 409–411 (2005).
    [CrossRef]
  29. W. Becker, Advance time-correlated single-photon counting (Springer Verlag, Berlin, 2005).
    [CrossRef]
  30. A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
    [CrossRef] [PubMed]
  31. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
    [CrossRef] [PubMed]
  32. H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
    [CrossRef]
  33. M. Kacprzak, A. Liebert, and R. Maniewski, “A time-resolved NIR topography system for two hemispheres of the brain,” presented at the European Conferences on Biomedical Optics, Munich, Germany, 13–16 June 2005.
  34. B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl Opt. 44, 1942–1947 (2005).
    [CrossRef] [PubMed]
  35. B. Montcel, R. Chabrier, and P. PouletK. Licha and R. Cubeddu, “Improvements in brain activation using time-resolved diffuse optical means,”,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
    [CrossRef]
  36. Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
    [CrossRef]
  37. S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
    [CrossRef] [PubMed]
  38. S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
    [CrossRef]

2006 (1)

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

2005 (11)

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 15, 409–411 (2005).
[CrossRef]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study,” J. Biomed. Opt. 10, 011012 (2005).
[CrossRef]

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model for light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159–2166 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl Opt. 44, 1942–1947 (2005).
[CrossRef] [PubMed]

Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
[CrossRef]

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

2004 (5)

C. Abrahamsson, T. Svensson, S. Svanberg, and S. Andersson-Engels, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12, 4103–4112 (2004).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
[CrossRef] [PubMed]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, “A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements,” J. Opt. A: Pure Appl. Opt. 6, 736–741 (2004).
[CrossRef]

2003 (3)

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[CrossRef]

H. Obrig and A. Villringer, “Beyond the Visible—Imaging the Human Brain With Light,” J. Cereb. Blood Flow Metab. 23, 1–18 (2003).
[CrossRef]

C. Zint, W. Uhring, M. Torregrossa, B. Cunin, and P. Poulet, “Streak Camera: A Multidetector for Diffuse Optical Tomography,” Appl. Opt. 42, 3313–3320 (2003).
[CrossRef] [PubMed]

2002 (2)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–44 (2002).
[CrossRef] [PubMed]

2001 (1)

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

1999 (1)

1997 (2)

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1023 (1997).
[CrossRef] [PubMed]

A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends in Neurosci. 20, 435–442 (1997).
[CrossRef]

1996 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

1995 (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light”, Phys. Today 48, 34–40 (1995).
[CrossRef]

1994 (1)

1993 (1)

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

1991 (1)

1989 (1)

Abrahamsson, C.

Andersson-Engels, S.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

C. Abrahamsson, T. Svensson, S. Svanberg, and S. Andersson-Engels, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12, 4103–4112 (2004).
[CrossRef] [PubMed]

Avrillier, S.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Bassi, A.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Becker, W.

W. Becker, Advance time-correlated single-photon counting (Springer Verlag, Berlin, 2005).
[CrossRef]

Berndt, K. W.

Biscotti, G.

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

Boas, D. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
[CrossRef] [PubMed]

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

Chabrier, R.

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl Opt. 44, 1942–1947 (2005).
[CrossRef] [PubMed]

B. Montcel, R. Chabrier, and P. PouletK. Licha and R. Cubeddu, “Improvements in brain activation using time-resolved diffuse optical means,”,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Chance, B.

A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends in Neurosci. 20, 435–442 (1997).
[CrossRef]

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light”, Phys. Today 48, 34–40 (1995).
[CrossRef]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

Comelli, D.

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[CrossRef]

Contini, D.

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

Cubeddu, R.

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study,” J. Biomed. Opt. 10, 011012 (2005).
[CrossRef]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”, Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

Cunin, B.

D’Andrea, C.

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[CrossRef]

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
[CrossRef] [PubMed]

De Nicola, S.

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, “A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements,” J. Opt. A: Pure Appl. Opt. 6, 736–741 (2004).
[CrossRef]

Del Bianco, S.

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model for light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159–2166 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–44 (2002).
[CrossRef] [PubMed]

Delfino, I.

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, “A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements,” J. Opt. A: Pure Appl. Opt. 6, 736–741 (2004).
[CrossRef]

Dreier, J. P.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Drenckhan, C.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Erdmann, R.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Esposito, R.

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, “A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements,” J. Opt. A: Pure Appl. Opt. 6, 736–741 (2004).
[CrossRef]

Feng, T. C.

Ferrari, M.

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study,” J. Biomed. Opt. 10, 011012 (2005).
[CrossRef]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

Franceschini, M. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
[CrossRef] [PubMed]

Grosenick, D.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Haskell, R. C.

Hazeki, O.

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1023 (1997).
[CrossRef] [PubMed]

Hoshi, Y.

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

Ijichi, S.

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

Imai, T.

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

Indovina, P. L.

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, “A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements,” J. Opt. A: Pure Appl. Opt. 6, 736–741 (2004).
[CrossRef]

Islam, F.

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

Isobe, K.

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

Itoh, S.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

Kacprzak, M.

M. Kacprzak, A. Liebert, and R. Maniewski, “A time-resolved NIR topography system for two hemispheres of the brain,” presented at the European Conferences on Biomedical Optics, Munich, Germany, 13–16 June 2005.

Kawada, K.

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

Kusaka, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

Lakowicz, J. R.

Lepore, M.

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, “A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements,” J. Opt. A: Pure Appl. Opt. 6, 736–741 (2004).
[CrossRef]

Liebert, A.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

M. Kacprzak, A. Liebert, and R. Maniewski, “A time-resolved NIR topography system for two hemispheres of the brain,” presented at the European Conferences on Biomedical Optics, Munich, Germany, 13–16 June 2005.

Louiselle, W.

W. Louiselle, Quantum Statistical Properties of Radiation (Wiley, New York, 1974).

Macdonald, R.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Maniewski, R.

M. Kacprzak, A. Liebert, and R. Maniewski, “A time-resolved NIR topography system for two hemispheres of the brain,” presented at the European Conferences on Biomedical Optics, Munich, Germany, 13–16 June 2005.

Martelli, F.

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model for light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159–2166 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–44 (2002).
[CrossRef] [PubMed]

McAdams, M. S.

Moeller, M.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Moller, M.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

Möller, M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Montcel, B.

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl Opt. 44, 1942–1947 (2005).
[CrossRef] [PubMed]

B. Montcel, R. Chabrier, and P. PouletK. Licha and R. Cubeddu, “Improvements in brain activation using time-resolved diffuse optical means,”,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Moulton, J. D.

Namba, M.

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

Nghiem, H. L.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Nishida, T.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

Nomura, Y.

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1023 (1997).
[CrossRef] [PubMed]

Ntziachristos, V.

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 15, 409–411 (2005).
[CrossRef]

Obrig, H.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

H. Obrig and A. Villringer, “Beyond the Visible—Imaging the Human Brain With Light,” J. Cereb. Blood Flow Metab. 23, 1–18 (2003).
[CrossRef]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Oda, M.

Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
[CrossRef]

Ohmae, E.

Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
[CrossRef]

Okada, H.

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

Okubo, K.

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

Patterson, M. S.

Pifferi, A.

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study,” J. Biomed. Opt. 10, 011012 (2005).
[CrossRef]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”, Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

Poulet, P.

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl Opt. 44, 1942–1947 (2005).
[CrossRef] [PubMed]

C. Zint, W. Uhring, M. Torregrossa, B. Cunin, and P. Poulet, “Streak Camera: A Multidetector for Diffuse Optical Tomography,” Appl. Opt. 42, 3313–3320 (2003).
[CrossRef] [PubMed]

B. Montcel, R. Chabrier, and P. PouletK. Licha and R. Cubeddu, “Improvements in brain activation using time-resolved diffuse optical means,”,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Prahl, S.

S. Prahl, Oregon Medical Laser Center website (2001), http://omlc.ogi.edu/spectra.

Quaresima, V.

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study,” J. Biomed. Opt. 10, 011012 (2005).
[CrossRef]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

Raitza, O.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Rinneberg, H.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

Ripoll, J.

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 15, 409–411 (2005).
[CrossRef]

Selb, J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

Soubret, A.

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 15, 409–411 (2005).
[CrossRef]

Spinelli, L.

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study,” J. Biomed. Opt. 10, 011012 (2005).
[CrossRef]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

Stamm, H.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Steinbrink, J.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Sterenborg, H. J. C. M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

Strangman, G.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

Sutton, J. P.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

Suzuki, T.

Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
[CrossRef]

Svaasand, L. O.

Svanberg, S.

Svensson, T.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

C. Abrahamsson, T. Svensson, S. Svanberg, and S. Andersson-Engels, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express 12, 4103–4112 (2004).
[CrossRef] [PubMed]

Swartling, J.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Tamura, M.

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1023 (1997).
[CrossRef] [PubMed]

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

Taroni, P.

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”, Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

Tinet, E.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Torregrossa, M.

Torricelli, A.

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study,” J. Biomed. Opt. 10, 011012 (2005).
[CrossRef]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”, Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T. T.

Tualle, J. M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Turner, G. M.

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 15, 409–411 (2005).
[CrossRef]

Ueda, Y.

Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
[CrossRef]

Uhring, W.

Valentini, G.

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance”, Appl. Opt. 38, 3670–3680 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

van Veen, R. L. P.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Villringer, A.

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

H. Obrig and A. Villringer, “Beyond the Visible—Imaging the Human Brain With Light,” J. Cereb. Blood Flow Metab. 23, 1–18 (2003).
[CrossRef]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends in Neurosci. 20, 435–442 (1997).
[CrossRef]

Wabnitz, H.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Walter, A.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

Whelan, M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, E. Tinet, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the Medphot protocol,” Appl. Opt. 11, 2104–2114 (2005).
[CrossRef]

Wilson, B. C.

Yamanaka, T.

Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
[CrossRef]

Yamashita, D.

Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
[CrossRef]

Yamashita, Y.

Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
[CrossRef]

Yodh, A.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light”, Phys. Today 48, 34–40 (1995).
[CrossRef]

Zaccanti, G.

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model for light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159–2166 (2005).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–44 (2002).
[CrossRef] [PubMed]

Zacharakis, G.

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 15, 409–411 (2005).
[CrossRef]

Zint, C.

Appl Opt. (2)

A. Liebert, H. Wabnitz, J. Steinbrink, H. Obrig, M. Moller, R. Macdonald, A. Villringer, and H. Rinneberg, “Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and extracerebral absorption changes from moments of distribution of times of flight of photons,” Appl Opt. 43, 3037–47 (2004).
[CrossRef] [PubMed]

B. Montcel, R. Chabrier, and P. Poulet, “Detection of cortical activation with time-resolved diffuse optical methods,” Appl Opt. 44, 1942–1947 (2005).
[CrossRef] [PubMed]

Appl. Opt. (5)

Biol. Psychiatry (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light,” Biol. Psychiatry 52, 679–693 (2002).
[CrossRef] [PubMed]

IEEE Trans. Instrum. Meas. (1)

D. Contini, A. Torricelli, A. Pifferi, L. Spinelli, P. Taroni, V. Quaresima, M. Ferrari, and R. Cubeddu, “Multi-channel time-resolved tissue oximeter for functional imaging of the brain,” IEEE Trans. Instrum. Meas. 55, 85–90 (2006).
[CrossRef]

J. Biomed Opt. (1)

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed Opt. 10, 11013 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

S. Ijichi, T. Kusaka, K. Isobe, F. Islam, K. Okubo, H. Okada, M. Namba, K. Kawada, T. Imai, and S. Itoh, “Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia,” J. Biomed. Opt. 10, 024026 (2005).
[CrossRef] [PubMed]

V. Quaresima, M. Ferrari, A. Torricelli, L. Spinelli, A. Pifferi, and R. Cubeddu, “Bilateral prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel time-resolved near-infrared topography study,” J. Biomed. Opt. 10, 011012 (2005).
[CrossRef]

J. Cereb. Blood Flow Metab. (1)

H. Obrig and A. Villringer, “Beyond the Visible—Imaging the Human Brain With Light,” J. Cereb. Blood Flow Metab. 23, 1–18 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

R. Esposito, S. De Nicola, M. Lepore, I. Delfino, and P. L. Indovina, “A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements,” J. Opt. A: Pure Appl. Opt. 6, 736–741 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

C. D’Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D: Appl. Phys. 36, 1675–1681 (2003).
[CrossRef]

Jap. J. Appl. Phys. (1)

Y. Ueda, T. Yamanaka, D. Yamashita, T. Suzuki, E. Ohmae, M. Oda, and Y. Yamashita, “Reflectance diffuse optical tomography:its application to hunam brain mapping,” Jap. J. Appl. Phys. 44, L1203–L1206 (2005).
[CrossRef]

Med. Phys. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1634 (1996).
[CrossRef] [PubMed]

Neuroimage (2)

A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, “Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance,” Neuroimage 24, 426–435 (2005).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23, S275–S288 (2004).
[CrossRef] [PubMed]

Neurosci. Lett. (1)

Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

G. M. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, “Complete-angle projection diffuse optical tomography by use of early photons,” Opt. Lett. 15, 409–411 (2005).
[CrossRef]

Ped. Res. (1)

S. Ijichi, T. Kusaka, K. Isobe, K. Okubo, K. Kawada, M. Namba, H. Okada, T. Nishida, T. Imai, and S. Itoh, “Developmental Changes of Optical Properties in Neonates Determined by Near-Infrared Time-Resolved Spectroscopy,” Ped. Res. 58, 568–573 (2005).
[CrossRef]

Phys. Med. Biol. (5)

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol. 42, 1009–1023 (1997).
[CrossRef] [PubMed]

A. Torricelli, V. Quaresima, A. Pifferi, G. Biscotti, L. Spinelli, P. Taroni, M. Ferrari, and R. Cubeddu, “Mapping of calf muscle oxygenation and haemoglobin content during dynamic plantar flexion exercise by multi-channel time-resolved near infrared spectroscopy”, Phys. Med. Biol. 49, 685–699, (2004).
[CrossRef] [PubMed]

F. Martelli, S. Del Bianco, and G. Zaccanti, “Perturbation model for light propagation through diffusive layered media,” Phys. Med. Biol. 50, 2159–2166 (2005).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001).
[CrossRef] [PubMed]

S. Del Bianco, F. Martelli, and G. Zaccanti “Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation,” Phys. Med. Biol. 47, 4131–44 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Timeresolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

Phys. Today (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light”, Phys. Today 48, 34–40 (1995).
[CrossRef]

Trends in Neurosci. (1)

A. Villringer and B. Chance, “Noninvasive optical spectroscopy and imaging of human brain function,” Trends in Neurosci. 20, 435–442 (1997).
[CrossRef]

Other (6)

W. Becker, Advance time-correlated single-photon counting (Springer Verlag, Berlin, 2005).
[CrossRef]

S. Prahl, Oregon Medical Laser Center website (2001), http://omlc.ogi.edu/spectra.

H. Wabnitz, M. Moeller, A. Liebert, A. Walter, R. Erdmann, O. Raitza, C. Drenckhan, J. P. Dreier, H. Obrig, J. Steinbrink, and R. MacDonaldK. Licha and R. Cubeddu, “A time-domain NIR brain imager applied in functional simulation experiments,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

M. Kacprzak, A. Liebert, and R. Maniewski, “A time-resolved NIR topography system for two hemispheres of the brain,” presented at the European Conferences on Biomedical Optics, Munich, Germany, 13–16 June 2005.

B. Montcel, R. Chabrier, and P. PouletK. Licha and R. Cubeddu, “Improvements in brain activation using time-resolved diffuse optical means,”,” in Photon Migration and Diffuse-Light Imaging II, Proceedings of SPIEVolume: 5859 Editor(s): (2005).
[CrossRef]

W. Louiselle, Quantum Statistical Properties of Radiation (Wiley, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Scheme of the system set-up (ND: neutral density attenuator; S1–S16: source fibers; R1–R4, reference fibers; F1–F16: collection bundles; PMT: photomultiplier; amp: amplifier; TCSPC: time-correlated single photon counting; sync: synchronization signal; µCHIP: microcontroller unit).

Fig. 2.
Fig. 2.

Example of instrument response function (IRF) and time-resolved reflectance curve (TRS) at 690 nm and 820 nm.

Fig. 3.
Fig. 3.

Example of fiber bundles displacement for two hexagonal probes, with 4 sources and 16 fiber bundles each (top). Strategy for avoiding cross talk among bundles for probe 1 (bottom). A similar scheme can be applied in parallel to PMT-3 and PMT4 for probe 2.

Fig. 4.
Fig. 4.

Linearity on absorption coefficient (top) and scattering coefficient (bottom) at 690 nm. Details on experimental set-up are shown in the inset in panel (a).

Fig. 5.
Fig. 5.

(a) Coefficient of variation (CV) for the measured absorption and reduced scattering coefficient at 690 nm. The line in the log-log plot is a best fit to the data (excluding the last three points) to a square law: CV ÷ Nn. (b) Stability test: plot of the error with respect to the mean value over the last 30 min for the measured absorption coefficient at 690 nm. The green (red) lines correspond to ±3% (±10%).

Fig. 6.
Fig. 6.

Muscle experiment: geometry of the position of sources and detectors (panel (a)) and photo during measurements (panel(b))

Fig. 7.
Fig. 7.

Time course of hemodynamic parameters in one channel of the left (thin line) and right (thick line) forearm muscle.

Fig. 8.
Fig. 8.

Spatial maps of hemodynamic changes during baseline (top), task (middle) and recovery (bottom) in the right (left column) and left (right column) forearm.

Fig. 9.
Fig. 9.

Brain experiment: geometry of the position of sources and detectors (panel (a)) and photo during measurements (panel(b))

Fig. 10.
Fig. 10.

Time course of hemodynamic changes in one channel of the left (thin line) and right (thick line) hemisphere.

Fig. 11.
Fig. 11.

Spatial maps of hemodynamic changes in the brain during baseline (top), task (middle) and recovery (bottom) for the contralateral (left column) and ipsilateral (right column) hemisphere.

Fig. 12.
Fig. 12.

Plot of the contrast for different time-gate values in the 0–2500 ps range in steps of 250 ps at 690 nm and 820 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ μ a ( λ ) = 1 v t ln ( R ( ρ , t ; λ ) R 0 ( ρ , t ; λ ) )
μ a ( λ ) = μ a 0 ( λ ) + Δ μ a ( λ )

Metrics