Abstract

We calculate whether deviations of Lambert-Beer’s law, which regulates depth ablation during corneal ablation, significantly influence corneal refractive parameters after refractive surgery and whether they influence visual performance. For this, we compute a point-to-point correction on the cornea while assuming a non-linear (including a quadratic term) fit for depth ablation. Post-surgical equations for refractive parameters using a non-linear fit show significant differences with respect to parameters obtained from a linear fit (Lambert-Beer’s law). Differences were also significant for corneal aberrations. These results show that corneal-ablation algorithms should include analytical information on deviations from Lambert-Beer’s law for achieving an accurate eye correction

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams

José Ramón Jiménez, Rosario González Anera, Luis Jiménez del Barco, Enrique Hita, and Francisco Pérez-Ocón
Opt. Express 13(1) 336-343 (2005)

Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea

Rosario G. Anera, Jose R. Jiménez, Luis Jiménez del Barco, and Enrique Hita
Opt. Lett. 28(6) 417-419 (2003)

Influence of laser polarization on ocular refractive parameters after refractive surgery

José R. Jiménez, Rosario G. Anera, Luis Jiménez del Barco, and Enrique Hita
Opt. Lett. 29(9) 962-964 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Jiménez, R. G. Anera, J. A. Díaz, and F. Pérez-Ocón, “Corneal asphericity after refractive surgery when the Munnerlyn formula is applied,” J. Opt. Soc. Am. A 21, 98–103 (2004).
    [Crossref]
  2. R. G. Anera, C. Villa, J. R. Jiménez, R. Gutiérrez, and L. Jiménez del Barco, “Differences between real and predicted corneal shapes after aspherical corneal ablation,” Appl. Opt. 44, 4528–4532 (2005).
    [Crossref] [PubMed]
  3. J. R. Jiménez, R. G. Anera, L. Jiménez del Barco, and E. Hita, “Influence of laser polarization on ocular refractive parameters after refractive surgery,” Opt. Lett. 29, 962–965 (2004).
    [Crossref] [PubMed]
  4. C. Roberts, “Biomechanical customization,” J. Cataract Refract. Surg. 31, 2–5 (2005).
    [Crossref] [PubMed]
  5. J. R. Jiménez, R. G. Anera, L. Jiménez del Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
    [Crossref]
  6. J. R. Jiménez, R. G. Anera, L. Jiménez del Barco, E. Hita, and F. Pérez-Ocón, “Correction factor for ablation algorithms used in corneal refractive surgery with gaussian-profile beams,” Opt. Express 13, 336–342 (2005).
    [Crossref] [PubMed]
  7. M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. 17, S584–S587 (2001).
    [PubMed]
  8. F. Manns, J. Shen, P. Soderberg, T. Matsui, and J. Parel, “Development of an algorithm for corneal reshaping with a scanning laser beam,” Appl. Opt. 21, 4600–4608 (1995).
    [Crossref]
  9. D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
    [Crossref] [PubMed]
  10. G. H. Pettit, M. Ediger, and R. P. Weiblinger, “Excimer laser ablation of the cornea,” Opt. Eng. 34, 661–667 (1995).
    [Crossref]
  11. R. R. Krueger and S. L. Trokel, “Quantization of corneal ablation by ultraviolet laser light,” Arch. Ophthalmol. 103, 1741–1742 (1985).
    [Crossref] [PubMed]
  12. Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
    [Crossref]
  13. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
    [Crossref] [PubMed]
  14. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth Heinemann, Oxford, 2000) p. 11–20, 167, 195–210.
    [Crossref]

2005 (3)

2004 (2)

2003 (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[Crossref] [PubMed]

2002 (2)

D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
[Crossref] [PubMed]

J. R. Jiménez, R. G. Anera, L. Jiménez del Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
[Crossref]

2001 (1)

M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. 17, S584–S587 (2001).
[PubMed]

1995 (2)

F. Manns, J. Shen, P. Soderberg, T. Matsui, and J. Parel, “Development of an algorithm for corneal reshaping with a scanning laser beam,” Appl. Opt. 21, 4600–4608 (1995).
[Crossref]

G. H. Pettit, M. Ediger, and R. P. Weiblinger, “Excimer laser ablation of the cornea,” Opt. Eng. 34, 661–667 (1995).
[Crossref]

1993 (1)

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

1985 (1)

R. R. Krueger and S. L. Trokel, “Quantization of corneal ablation by ultraviolet laser light,” Arch. Ophthalmol. 103, 1741–1742 (1985).
[Crossref] [PubMed]

Anera, R. G.

Arif, M.

D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
[Crossref] [PubMed]

Atchison, D. A.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth Heinemann, Oxford, 2000) p. 11–20, 167, 195–210.
[Crossref]

Bor, Z.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

Díaz, J. A.

Ediger, M.

G. H. Pettit, M. Ediger, and R. P. Weiblinger, “Excimer laser ablation of the cornea,” Opt. Eng. 34, 661–667 (1995).
[Crossref]

Fust, A.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

Gutiérrez, R.

Hita, E.

Hopp, B.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

Huang, D.

D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
[Crossref] [PubMed]

Jiménez, J. R.

Jiménez del Barco, L.

Krueger, R. R.

R. R. Krueger and S. L. Trokel, “Quantization of corneal ablation by ultraviolet laser light,” Arch. Ophthalmol. 103, 1741–1742 (1985).
[Crossref] [PubMed]

Manns, F.

F. Manns, J. Shen, P. Soderberg, T. Matsui, and J. Parel, “Development of an algorithm for corneal reshaping with a scanning laser beam,” Appl. Opt. 21, 4600–4608 (1995).
[Crossref]

Marton, Z.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

Matsui, T.

F. Manns, J. Shen, P. Soderberg, T. Matsui, and J. Parel, “Development of an algorithm for corneal reshaping with a scanning laser beam,” Appl. Opt. 21, 4600–4608 (1995).
[Crossref]

Mohay, J.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

Mrochen, M.

M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. 17, S584–S587 (2001).
[PubMed]

Parel, J.

F. Manns, J. Shen, P. Soderberg, T. Matsui, and J. Parel, “Development of an algorithm for corneal reshaping with a scanning laser beam,” Appl. Opt. 21, 4600–4608 (1995).
[Crossref]

Pérez-Ocón, F.

Pettit, G. H.

G. H. Pettit, M. Ediger, and R. P. Weiblinger, “Excimer laser ablation of the cornea,” Opt. Eng. 34, 661–667 (1995).
[Crossref]

Racz, B.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

Ratkay, I.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

Roberts, C.

C. Roberts, “Biomechanical customization,” J. Cataract Refract. Surg. 31, 2–5 (2005).
[Crossref] [PubMed]

Seiler, T.

M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. 17, S584–S587 (2001).
[PubMed]

Shen, J.

F. Manns, J. Shen, P. Soderberg, T. Matsui, and J. Parel, “Development of an algorithm for corneal reshaping with a scanning laser beam,” Appl. Opt. 21, 4600–4608 (1995).
[Crossref]

Smith, G.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth Heinemann, Oxford, 2000) p. 11–20, 167, 195–210.
[Crossref]

Soderberg, P.

F. Manns, J. Shen, P. Soderberg, T. Matsui, and J. Parel, “Development of an algorithm for corneal reshaping with a scanning laser beam,” Appl. Opt. 21, 4600–4608 (1995).
[Crossref]

Suveges, I.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

Szabo, G.

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

Trokel, S. L.

R. R. Krueger and S. L. Trokel, “Quantization of corneal ablation by ultraviolet laser light,” Arch. Ophthalmol. 103, 1741–1742 (1985).
[Crossref] [PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[Crossref] [PubMed]

Villa, C.

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[Crossref] [PubMed]

Weiblinger, R. P.

G. H. Pettit, M. Ediger, and R. P. Weiblinger, “Excimer laser ablation of the cornea,” Opt. Eng. 34, 661–667 (1995).
[Crossref]

Appl. Opt. (2)

R. G. Anera, C. Villa, J. R. Jiménez, R. Gutiérrez, and L. Jiménez del Barco, “Differences between real and predicted corneal shapes after aspherical corneal ablation,” Appl. Opt. 44, 4528–4532 (2005).
[Crossref] [PubMed]

F. Manns, J. Shen, P. Soderberg, T. Matsui, and J. Parel, “Development of an algorithm for corneal reshaping with a scanning laser beam,” Appl. Opt. 21, 4600–4608 (1995).
[Crossref]

Appl. Phys. Lett. (1)

J. R. Jiménez, R. G. Anera, L. Jiménez del Barco, and E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
[Crossref]

Arch. Ophthalmol. (1)

R. R. Krueger and S. L. Trokel, “Quantization of corneal ablation by ultraviolet laser light,” Arch. Ophthalmol. 103, 1741–1742 (1985).
[Crossref] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (2)

D. Huang and M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
[Crossref] [PubMed]

C. Roberts, “Biomechanical customization,” J. Cataract Refract. Surg. 31, 2–5 (2005).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (1)

M. Mrochen and T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. 17, S584–S587 (2001).
[PubMed]

Opt. Eng. (2)

Z. Bor, B. Hopp, B. Racz, G. Szabo, Z. Marton, I. Ratkay, J. Mohay, I. Suveges, and A. Fust, “Physical problems of excimer laser cornea ablation,” Opt. Eng. 32, 2481–2486 (1993).
[Crossref]

G. H. Pettit, M. Ediger, and R. P. Weiblinger, “Excimer laser ablation of the cornea,” Opt. Eng. 34, 661–667 (1995).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth Heinemann, Oxford, 2000) p. 11–20, 167, 195–210.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Linear and quadratic fit of experimental data on ablation depth corresponding to Krueger et al. [11]. F and Fth indicate the intensity exposure on the cornea and the threshold exposure, respectively.

Fig. 2.
Fig. 2.

Post-surgical corneal spherical-aberration difference (ΔS) between computations when considering or not a quadratic deviation from Lambert-Beer’s law as a function of the initial degree of myopia.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d p = m · ln ( F i n c F t h )
d p N L = a · ln ( F i n c F t h ) + b · ( ln ( F i n c F t h ) ) 2
ρ = d p N L d p = a · ln ( F i n c F t h ) + b · ( ln ( F i n c F t h ) ) 2 m · ln ( F i n c F t h )
F i n c = F 0 ( cos α · ( 1 R ˜ ) )
ρ = ρ 0 + ρ 1 ( y R ) 2 + ρ 2 ( y R ) 4
ρ 0 = a ( 0.0435 + t ) + b ( 0.0018 0.087 t + t 2 ) m t ρ 1 = 0.5 a + b ( 0.0435 t ) m t
ρ 2 = a ( 0.23424 0.5 p ) + b ( 0.223 + p ( 0.0435 t ) + 0.4648 t ) m t
c ( y ) = 4 D y 2 3 D s 2 3
1 R = ( 8 b D 3 ) · ( 0.053 + t ) · ( + 0.034 + t ) + 129.87 m t + a D · ( 0.116 + 8 t 3 ) m t
p = a m 2 t 2 D R 3 ( 144 + s 2 ( 16.7328 + 36 p ) ) + 27 p m 3 t 3 { 3 m t + D R [ a ( s 2 0.348 + 8 t ) + b ( 0.144 0.87 s 2 + ( 2 s 2 0.696 ) t + 8 t 2 ) ] } 3 +
+ b s m 2 t 2 R 3 ( 12.528 288 t + s 2 ( 16.538 33.4656 t + p ( 72 t 3.132 ) ) ) { 3 m t + D R [ a ( s 2 0.348 + 8 t ) + b ( 0.144 0.87 s 2 + ( 2 s 2 0.696 ) t + 8 t 2 ) ] } 3
8 D 3 = 1 R M u n n 1 R p M u n n = R ' M u n n 3 R 3 p
Δ c ( y ) = 0.476 D + 3.06 D y 2 t + ( 5.61 D 22.384 D y 2 ) + ( 4.76 D + 23.06 D y 2 ) t
ρ = ( α 0.043 β ) 0.5 β y 2 + ( 0.232 0.5 p ) β y 4
with α = 1 m [ a + b t ] and β = b m

Metrics