Abstract

The experiment observation of self-mixing interference in distributed feedback (DFB) laser has been illuminated in this paper. The influences on self-mixing interference have been discussed in both simulation and experiment through changing the conditions of external cavity. The experiment results show a good agreement with the simulation results, and validate the feasibility of DFB lasers for self-mixing interference application. Combining the self-mixing interference technique and DFB laser, we can obtain the compact structure and high-accuracy self-mixing interference sensors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
    [CrossRef]
  2. A. Hsu, J. Seurin, S. L. Chuang, and K. D. Choquette, “Optical feedback in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 37, 1643–1649 (2001).
    [CrossRef]
  3. X. Jia, W. Qi, and G. Zhang, “Optical-feedback-technique controlled by microcomputer for Nd: YAG laser medical equipment,” Guangxue Jishu: Optical Technique 6, 23–27 (1996).
  4. J. W. Choi, M. J. Yu, and M. Kopica, “Photoacoustic laser Doppler velocimetry using the self-mixing effect of CO2 laser,” P SOC Photo-Opt. 5240230–234, (2004).
  5. H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phy. B 79, pp.325–330 (2004).
    [CrossRef]
  6. J. Zhou and M. Wang, “Effects of self-mixing interference on gain-coupled distributed-feedback lasers,” Opt. Express 13, 1848–1854 (2005).
    [CrossRef] [PubMed]
  7. J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21, 1869–1871 (1996).
    [CrossRef] [PubMed]
  8. L. A. Wang, Y. H. Lo, and M. Z. Iqbal, et al., “Low-threshold four-wavelength DFB laser array for multigigabit/s high-density WDM systems applications,” IEEE Photon. Technol. Lett. 3, 965–968 (1991).
    [CrossRef]
  9. H. Sundaresan, S. Kwan, and A. Lord, et al., “Highly reproducible ridge waveguide multielectrode DFB lasers for optical communication systems,” Electron. Lett. 26, 1876–1877, (1990).
    [CrossRef]
  10. F. Favre, “Theoretical analysis of external optical feedback on DFB semiconductor lasers,” IEEE J. Quantum Electron. 23, 81–88 (1987).
    [CrossRef]

2005 (1)

2004 (3)

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
[CrossRef]

J. W. Choi, M. J. Yu, and M. Kopica, “Photoacoustic laser Doppler velocimetry using the self-mixing effect of CO2 laser,” P SOC Photo-Opt. 5240230–234, (2004).

H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phy. B 79, pp.325–330 (2004).
[CrossRef]

2001 (1)

A. Hsu, J. Seurin, S. L. Chuang, and K. D. Choquette, “Optical feedback in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 37, 1643–1649 (2001).
[CrossRef]

1996 (2)

X. Jia, W. Qi, and G. Zhang, “Optical-feedback-technique controlled by microcomputer for Nd: YAG laser medical equipment,” Guangxue Jishu: Optical Technique 6, 23–27 (1996).

J. T. Kringlebotn, W. H. Loh, and R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21, 1869–1871 (1996).
[CrossRef] [PubMed]

1991 (1)

L. A. Wang, Y. H. Lo, and M. Z. Iqbal, et al., “Low-threshold four-wavelength DFB laser array for multigigabit/s high-density WDM systems applications,” IEEE Photon. Technol. Lett. 3, 965–968 (1991).
[CrossRef]

1990 (1)

H. Sundaresan, S. Kwan, and A. Lord, et al., “Highly reproducible ridge waveguide multielectrode DFB lasers for optical communication systems,” Electron. Lett. 26, 1876–1877, (1990).
[CrossRef]

1987 (1)

F. Favre, “Theoretical analysis of external optical feedback on DFB semiconductor lasers,” IEEE J. Quantum Electron. 23, 81–88 (1987).
[CrossRef]

Choi, J. W.

J. W. Choi, M. J. Yu, and M. Kopica, “Photoacoustic laser Doppler velocimetry using the self-mixing effect of CO2 laser,” P SOC Photo-Opt. 5240230–234, (2004).

Choquette, K. D.

A. Hsu, J. Seurin, S. L. Chuang, and K. D. Choquette, “Optical feedback in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 37, 1643–1649 (2001).
[CrossRef]

Chuang, S. L.

A. Hsu, J. Seurin, S. L. Chuang, and K. D. Choquette, “Optical feedback in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 37, 1643–1649 (2001).
[CrossRef]

Favre, F.

F. Favre, “Theoretical analysis of external optical feedback on DFB semiconductor lasers,” IEEE J. Quantum Electron. 23, 81–88 (1987).
[CrossRef]

Hsu, A.

A. Hsu, J. Seurin, S. L. Chuang, and K. D. Choquette, “Optical feedback in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 37, 1643–1649 (2001).
[CrossRef]

Huan, H.

H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phy. B 79, pp.325–330 (2004).
[CrossRef]

Iqbal, M. Z.

L. A. Wang, Y. H. Lo, and M. Z. Iqbal, et al., “Low-threshold four-wavelength DFB laser array for multigigabit/s high-density WDM systems applications,” IEEE Photon. Technol. Lett. 3, 965–968 (1991).
[CrossRef]

Jia, X.

X. Jia, W. Qi, and G. Zhang, “Optical-feedback-technique controlled by microcomputer for Nd: YAG laser medical equipment,” Guangxue Jishu: Optical Technique 6, 23–27 (1996).

Kopica, M.

J. W. Choi, M. J. Yu, and M. Kopica, “Photoacoustic laser Doppler velocimetry using the self-mixing effect of CO2 laser,” P SOC Photo-Opt. 5240230–234, (2004).

Kringlebotn, J. T.

Kwan, S.

H. Sundaresan, S. Kwan, and A. Lord, et al., “Highly reproducible ridge waveguide multielectrode DFB lasers for optical communication systems,” Electron. Lett. 26, 1876–1877, (1990).
[CrossRef]

Lai, G.

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
[CrossRef]

Laming, R. I.

Lo, Y. H.

L. A. Wang, Y. H. Lo, and M. Z. Iqbal, et al., “Low-threshold four-wavelength DFB laser array for multigigabit/s high-density WDM systems applications,” IEEE Photon. Technol. Lett. 3, 965–968 (1991).
[CrossRef]

Loh, W. H.

Lord, A.

H. Sundaresan, S. Kwan, and A. Lord, et al., “Highly reproducible ridge waveguide multielectrode DFB lasers for optical communication systems,” Electron. Lett. 26, 1876–1877, (1990).
[CrossRef]

Qi, W.

X. Jia, W. Qi, and G. Zhang, “Optical-feedback-technique controlled by microcomputer for Nd: YAG laser medical equipment,” Guangxue Jishu: Optical Technique 6, 23–27 (1996).

Seurin, J.

A. Hsu, J. Seurin, S. L. Chuang, and K. D. Choquette, “Optical feedback in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 37, 1643–1649 (2001).
[CrossRef]

Sundaresan, H.

H. Sundaresan, S. Kwan, and A. Lord, et al., “Highly reproducible ridge waveguide multielectrode DFB lasers for optical communication systems,” Electron. Lett. 26, 1876–1877, (1990).
[CrossRef]

Wang, L. A.

L. A. Wang, Y. H. Lo, and M. Z. Iqbal, et al., “Low-threshold four-wavelength DFB laser array for multigigabit/s high-density WDM systems applications,” IEEE Photon. Technol. Lett. 3, 965–968 (1991).
[CrossRef]

Wang, M.

J. Zhou and M. Wang, “Effects of self-mixing interference on gain-coupled distributed-feedback lasers,” Opt. Express 13, 1848–1854 (2005).
[CrossRef] [PubMed]

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
[CrossRef]

H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phy. B 79, pp.325–330 (2004).
[CrossRef]

Yu, M. J.

J. W. Choi, M. J. Yu, and M. Kopica, “Photoacoustic laser Doppler velocimetry using the self-mixing effect of CO2 laser,” P SOC Photo-Opt. 5240230–234, (2004).

Zhang, G.

X. Jia, W. Qi, and G. Zhang, “Optical-feedback-technique controlled by microcomputer for Nd: YAG laser medical equipment,” Guangxue Jishu: Optical Technique 6, 23–27 (1996).

Zhou, J.

Appl. Phy. B (1)

H. Huan and M. Wang, “Self-mixing interference effect of DFB semiconductor lasers,” Appl. Phy. B 79, pp.325–330 (2004).
[CrossRef]

Electron. Lett. (1)

H. Sundaresan, S. Kwan, and A. Lord, et al., “Highly reproducible ridge waveguide multielectrode DFB lasers for optical communication systems,” Electron. Lett. 26, 1876–1877, (1990).
[CrossRef]

Guangxue Jishu: Optical Technique (1)

X. Jia, W. Qi, and G. Zhang, “Optical-feedback-technique controlled by microcomputer for Nd: YAG laser medical equipment,” Guangxue Jishu: Optical Technique 6, 23–27 (1996).

IEEE J. Quantum Electron. (2)

A. Hsu, J. Seurin, S. L. Chuang, and K. D. Choquette, “Optical feedback in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 37, 1643–1649 (2001).
[CrossRef]

F. Favre, “Theoretical analysis of external optical feedback on DFB semiconductor lasers,” IEEE J. Quantum Electron. 23, 81–88 (1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. A. Wang, Y. H. Lo, and M. Z. Iqbal, et al., “Low-threshold four-wavelength DFB laser array for multigigabit/s high-density WDM systems applications,” IEEE Photon. Technol. Lett. 3, 965–968 (1991).
[CrossRef]

Opt. Commun. (1)

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

P SOC Photo-Opt. (1)

J. W. Choi, M. J. Yu, and M. Kopica, “Photoacoustic laser Doppler velocimetry using the self-mixing effect of CO2 laser,” P SOC Photo-Opt. 5240230–234, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The theoretical illustration for the self-mixing interference of DFB laser

Fig. 2.
Fig. 2.

Simulation results for amplitude of external cavity L ext modulated by sinusoidal signal. Traces 1 and 2 denote the output signal (the modulation amplitude in trace 2 is stronger than that in trace 1), and trace 3 denotes the sinusoidal modulation signal.

Fig. 3.
Fig. 3.

Simulation results of output signal versus different reflectivity r ext. Traces 1, 2 and 3 show the simulated output signal when r ext=0.1, 0.2, 0.3 respectively.

Fig. 4.
Fig. 4.

Simulation results versus different feedback level X. Traces 1, 2 and 3 show the simulated output signal when X=0.085, 0.86, 2.6 respectively.

Fig. 5.
Fig. 5.

Experiment system of self-mixing interference in DFB laser.

Fig. 6.
Fig. 6.

Experiment results versus different amplitude of Lext modulated by sinusoidal signal. Traces 1, 2 and 3 denote the output signal with the modulating voltage amplitude of 20V, 30V and 40V respectively, and trace 4 denotes the sinusoidal modulation signal.

Fig. 7.
Fig. 7.

Experiment results versus different reflectivity r ext of external reflector. Traces 1, 2 and 3 show the output signal when r ext=0.27, 0.35, 0.46 respectively.

Fig. 8.
Fig. 8.

Experiment results versus different feedback level. Traces 1, 2 show the detected output signal without and with incline, and trace 3 shows the detected output signal with branches.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ω τ ext = 2 n ( 1 + α m 2 ) 1 2 C r · r ext L ext L sin [ ω τ ext arg ( C r ) arg ( r ext ) a tan ( α m ) ]
Δ G = 2 c n L C r · r ext cos [ ω τ ext arg ( C r ) arg ( r ext ) ]
X = 2 n ( 1 + α m 2 ) 1 2 C r · r ext L ext L

Metrics