Abstract

Oscillator-only femtosecond laser micromachining enables the manufacturing of integrated optical components with circular transverse profiles in transparent materials. The circular profile is due to diffusion of heat accumulating at the focus. We control the heat diffusion by focusing bursts of femtosecond laser pulses at various repetition rates into sodalime glass. We investigate the effect the repetition rate and number of pulses have on the size of the resulting structures. We identify the combinations of burst repetition rate and number of pulses within a burst for which accumulation of heat occurs. The threshold for heat accumulation depends on the number of pulses within a burst. The burst repetition rate and the number of pulses within a burst provide convenient control of the morphology of structures generated with high repetition rate femtosecond micromachining.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999).
    [CrossRef]
  3. L. Sudrie, M. Franco, B. Prade, and A. Mysyrewicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Comm. 171, 279-284 (1999).
    [CrossRef]
  4. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
    [CrossRef]
  5. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26, 1516-1518 (2001).
    [CrossRef]
  6. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  7. A. M. Streltsov, and N. F. Borrelli, "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses," Opt. Lett. 26, 42-43 (2001).
    [CrossRef]
  8. A. M. Kowalevicz, T. R. Schibli, F. X. Kartner, and J. G. Fujimoto, "Ultralow-threshold Kerr-lens mode-locked Ti : Al2O3 laser," Opt. Lett. 27, 2037-2039 (2002).
    [CrossRef]
  9. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
    [CrossRef]
  10. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, "Femtosecond writing of active optical waveguides with astigmatically shaped beams," J. Opt. Soc. Am. B 20, 1559-1567 (2003).
    [CrossRef]
  11. X. Wang, H. C. Guo, H. Yang, H. B. Jiang, and Q. H. Gong, "Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses," Appl. Opt. 43, 4571-4574 (2004).
    [CrossRef] [PubMed]
  12. A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
    [CrossRef] [PubMed]
  13. H. S. Carslaw, and J. C. Jaeger, Conduction of heat in solids (Clarendon Press, Oxford, 1959).
  14. C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2003).
    [CrossRef]
  15. S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshimo, L. Shah, B. J., and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express 13, 4708-4716 (2005).
    [CrossRef] [PubMed]
  16. L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Optics Express 13, 1999-2006 (2005).
    [CrossRef] [PubMed]
  17. R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, "Optical waveguide writing with a diode-pumped femtosecond oscillator," Opt. Lett. 29, 1900-1902 (2004).
    [CrossRef] [PubMed]

2005

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshimo, L. Shah, B. J., and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Optics Express 13, 1999-2006 (2005).
[CrossRef] [PubMed]

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

2004

2003

R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, "Femtosecond writing of active optical waveguides with astigmatically shaped beams," J. Opt. Soc. Am. B 20, 1559-1567 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

2002

2001

2000

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

1999

L. Sudrie, M. Franco, B. Prade, and A. Mysyrewicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Comm. 171, 279-284 (1999).
[CrossRef]

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999).
[CrossRef]

1996

Arai, A. Y.

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Optics Express 13, 1999-2006 (2005).
[CrossRef] [PubMed]

Bado, P.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Borrelli, N. F.

Brodeur, A.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Cerullo, G.

Chiodo, N.

Davis, K. M.

De Silvestri, S.

Della Valle, G.

Eaton, S. M.

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshimo, L. Shah, B. J., and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Optics Express 13, 1999-2006 (2005).
[CrossRef] [PubMed]

Florea, C.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Franco, M.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrewicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Comm. 171, 279-284 (1999).
[CrossRef]

Fujimoto, J. G.

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Gong, Q. H.

Guo, H. C.

Hartl, I.

Herman, P. R.

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Optics Express 13, 1999-2006 (2005).
[CrossRef] [PubMed]

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshimo, L. Shah, B. J., and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

Hirao, K.

Ippen, E. P.

Jiang, H. B.

Kartner, F. X.

Kazansky, P. G.

Killi, A.

Kondo, Y.

Kopf, D.

Kowalevicz, A. M.

Laporta, P.

Lederer, M.

Marangoni, M.

Maynard, R.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Mazur, E.

C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Minoshima, K.

Mitsuyu, T.

Miura, K.

Morgner, U.

Mysyrewicz, A.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrewicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Comm. 171, 279-284 (1999).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Nouchi, K.

Osellame, R.

Polli, D.

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrewicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Comm. 171, 279-284 (1999).
[CrossRef]

Ramponi, R.

Said, A. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Schibli, T. R.

Shah, L.

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshimo, L. Shah, B. J., and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Optics Express 13, 1999-2006 (2005).
[CrossRef] [PubMed]

Sharma, V.

Sikorski, Y.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Streltsov, A. M.

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrewicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Comm. 171, 279-284 (1999).
[CrossRef]

Sugimoto, N.

Taccheo, S.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Wang, X.

Watanabe, M.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Winick, K. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

Yang, H.

Yoshimo, F.

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshimo, L. Shah, B. J., and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

Zhang, H. B.

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshimo, L. Shah, B. J., and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. A

C. B. Schaffer, J. F. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, "Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics," Appl. Phys. A 77, 109-111 (2003).
[CrossRef]

Electron. Lett.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, "Optical waveguide amplifier in Nd-doped glass written with near-IR femtosecond laser pulses," Electron. Lett. 36, 226-227 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Comm.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrewicz, "Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses," Opt. Comm. 171, 279-284 (1999).
[CrossRef]

Opt. Lett.

R. Osellame, N. Chiodo, G. Della Valle, S. Taccheo, R. Ramponi, G. Cerullo, A. Killi, U. Morgner, M. Lederer, and D. Kopf, "Optical waveguide writing with a diode-pumped femtosecond oscillator," Opt. Lett. 29, 1900-1902 (2004).
[CrossRef] [PubMed]

A. M. Kowalevicz, V. Sharma, E. P. Ippen, J. G. Fujimoto, and K. Minoshima, "Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator," Opt. Lett. 30, 1060-1062 (2005).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, "Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses," Opt. Lett. 24, 646-648 (1999).
[CrossRef]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, "Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator," Opt. Lett. 26, 1516-1518 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001).
[CrossRef]

A. M. Streltsov, and N. F. Borrelli, "Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses," Opt. Lett. 26, 42-43 (2001).
[CrossRef]

A. M. Kowalevicz, T. R. Schibli, F. X. Kartner, and J. G. Fujimoto, "Ultralow-threshold Kerr-lens mode-locked Ti : Al2O3 laser," Opt. Lett. 27, 2037-2039 (2002).
[CrossRef]

Optics Express

S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshimo, L. Shah, B. J., and A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Optics Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Optics Express 13, 1999-2006 (2005).
[CrossRef] [PubMed]

Other

H. S. Carslaw, and J. C. Jaeger, Conduction of heat in solids (Clarendon Press, Oxford, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

At low repetition rate, the energy deposited by each laser pulse diffuses out of the focal volume before the next pulse arrives. At high repetition rate, energy accumulates in the focal volume making it possible to achieve very high temperatures around the focal volume with pulse energies of just a few nanojoules. Yellow: laser pulses; red: deposited energy.

Fig. 2.
Fig. 2.

Changing the laser repetition rate using an acousto-optically driven gate (dashed line). Left: The repetition rate is reduced to 1/6 of the pulse repetition rate. Right: burst of 4 pulses at 1/6 of the pulse repetition rate.

Fig. 3.
Fig. 3.

Transmission optical microscopy image of sodalime glass irradiated with trains of femtosecond pulses, varying the number of bursts per spot and the repetition rate. The number of pulses within a burst is held fixed at 10. At low repetition rate and low number of bursts, the structures created in the sample are of too low contrast to be seen in transmission microscopy. The missing spots at 103 and 107 bursts, and 1.25 MHz repetition rate are due to an experimental malfunction.

Fig. 4.
Fig. 4.

Diameter of the structures generated at different repetition rates and number of 5-pulse bursts.

Fig. 5.
Fig. 5.

Diameter of structures generated at a constant translation speed of 1 mm/s for different repetition rates and number of pulses inside a burst. The pulse energy is 5.5 nJ (at the sample).

Fig. 6.
Fig. 6.

Boundary between the regions of repetition-rate/pulse-number parameter space where the energy accumulates from pulse to pulse and where pulses act individually. Each 60-fs pulse delivers an energy of 5.5 nJ. Filled circles: the diameter of the structure grows by more than 1.5 µm in 105 bursts; open circles: no growth observed. The shaded area delineates the regions where calculations indicate that the temperature at the focus is raised by more then 150±50 K between successive bursts.

Metrics