Abstract

In this paper, static and dynamic thermo-optical numerical analysis of a Digital Optical Switch (DOS), based on amorphous silicon waveguide and operating at the infrared communications wavelength of 1550 nm, are presented. The aim of our design is to achieve good performances in terms of cross talk and switching time, considering relaxed requirements for the realization of device: large cross section single mode waveguides and an angle between the output branches not too small. Using a low temperature difference between the two output branches, an optical switching with a crosstalk of 25 dB and a response time of the order of ten microseconds are obtained. The device, designed for low-cost photonic applications, could be easily integrated in silicon optoelectronic circuits.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Silberberg, P. Perlmutter, and J. E. Baran, "Digital optical switch," Appl. Phys. Lett. 51, 1230-1232 (1978).
    [CrossRef]
  2. W. K. Burns, "Normal mode analysis of waveguide devices. Part I: theory," IEEE J. Lightwave Technol. 6, 1051-1057 (1988).
    [CrossRef]
  3. W. K. Burns, "Normal mode analysis of waveguide devices. Part II: Device output and crosstalk: theory," IEEE J. Lightwave Technol. 6, 1058-1068 (1988).
    [CrossRef]
  4. G J. M. Krijnen, H. J. W. M. Hoekstra, P. V. Lambeck, T. J. M. A. Pompa, "Simple analytical description of performance of Y junctions," Electron. Lett. 28, 2072-2074 (1992).
    [CrossRef]
  5. R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, "Performance and modeling of advanced Ti:LiNbO3," IEEE J. Lightwave Technol. 20, 92-99 (2002).
    [CrossRef]
  6. R. Krahenbuhl, M. M. Howerton, J. Dubinger, A. S. Greenblatt, and S. T. Vohra, "Reflective digital optical switch (RDOS) for DWDM optical network applications," IEEE Photon. Technol. Lett. 13, 34-36 (2001).
    [CrossRef]
  7. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
    [CrossRef]
  8. M. N. Kahn, B. I. Miller, E.C. Burrows, and C. A. Burrus, "High-speed digital Y-branch switch/modulator with integrated passive tapers for fibre pigatailing," Electron. Lett. 35, 894-895 (1999).
    [CrossRef]
  9. R. Moosburger, and K. Petermann, "4×4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998).
    [CrossRef]
  10. D. Sun, Z. Liu, Y. Zha, W. Deng, Y. Zhang, and X. Li, "Thermo-optic waveguide digital optical switch using symmetrically coupled gratings," Opt. Express 13, 5463-5471 (2005).
    [CrossRef] [PubMed]
  11. C. Jang, and R. T. Chen, "Polymer-Based 1x6 Thermo-optic switch incorporating an Elliptic TIR Waveguide Mirror," IEEE J. Lightwave Technol. 21, 1053-1058 (2003).
    [CrossRef]
  12. W. H. G. Horsthuis, and M. B. J. Diemeer, "Components for multiple wavelength systems in polymer optoboard technology," IEEE LEOS 8th Annual Meeting Conference Proceedings 2, San Francisco, USA, 251-252 (1995).
    [CrossRef]
  13. N. Ooba, S. Toyoda, and T. Kurihara, "Low crosstalk and low loss 1×8 digital optical switch using silicone resin waveguides," Electron. Lett. 35, 1364-1365 (1999).
    [CrossRef]
  14. M. Hoffmann, P. Kopka, and E. Voges, "Thermooptical digital switch arrays in silica-on-silicon with defined zero-voltage state," IEEE J. Lightwave Technol. 16, 395-400 (1998).
    [CrossRef]
  15. O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997).
    [CrossRef]
  16. M. Okamura, and S. Suzuki, "Infrared photodetection using a-Si:H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
    [CrossRef]
  17. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
    [CrossRef]
  18. L. Sirleto, M. Iodice, F. G. Della Corte, and I. Rendina, "Digital optical switch based on amorphous silicon waveguide," Opt. Eng. 42, 3417-3418 (2003).
    [CrossRef]
  19. OlympiOs Integrated Optics Software-Manual, http://www.c2v.nl.
  20. Ansys 9.0 Release Guide, 2005, http://www.ansys.com.
  21. S. Sujecki, T. M. Benson, P. Sewell, and P. Kendall, "Novel vectorial analysis of optical waveguides," IEEE J. Lightwave Technol. 16, 1329-1335 (1998).
    [CrossRef]
  22. W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method," IEEE Photon. Technol. Lett. 8, 649-651 (1996).
    [CrossRef]
  23. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000).
    [CrossRef]
  24. S. P. Pogossian, L. Vescan, and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," IEEE J. Lightwave Technol. 16, 1851-1853 (1998).
    [CrossRef]
  25. D. Y. Smith, E. Shiles, and M. Inokuti, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, San Francisco, CA, 1998).
  26. J. C. Sturm, W. Wilson, and M. Iodice, "Thermal effects and scaling in organic light emitting flat panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
    [CrossRef]
  27. I. Ilic, R. Scarmozzino, and R. M. Osgood, "Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits," IEEE J. Lightwave Technol. 14, 2813-2822 (1996).
    [CrossRef]

2005 (1)

2003 (2)

L. Sirleto, M. Iodice, F. G. Della Corte, and I. Rendina, "Digital optical switch based on amorphous silicon waveguide," Opt. Eng. 42, 3417-3418 (2003).
[CrossRef]

C. Jang, and R. T. Chen, "Polymer-Based 1x6 Thermo-optic switch incorporating an Elliptic TIR Waveguide Mirror," IEEE J. Lightwave Technol. 21, 1053-1058 (2003).
[CrossRef]

2002 (1)

R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, "Performance and modeling of advanced Ti:LiNbO3," IEEE J. Lightwave Technol. 20, 92-99 (2002).
[CrossRef]

2001 (1)

R. Krahenbuhl, M. M. Howerton, J. Dubinger, A. S. Greenblatt, and S. T. Vohra, "Reflective digital optical switch (RDOS) for DWDM optical network applications," IEEE Photon. Technol. Lett. 13, 34-36 (2001).
[CrossRef]

2000 (2)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000).
[CrossRef]

1999 (2)

N. Ooba, S. Toyoda, and T. Kurihara, "Low crosstalk and low loss 1×8 digital optical switch using silicone resin waveguides," Electron. Lett. 35, 1364-1365 (1999).
[CrossRef]

M. N. Kahn, B. I. Miller, E.C. Burrows, and C. A. Burrus, "High-speed digital Y-branch switch/modulator with integrated passive tapers for fibre pigatailing," Electron. Lett. 35, 894-895 (1999).
[CrossRef]

1998 (6)

R. Moosburger, and K. Petermann, "4×4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998).
[CrossRef]

M. Hoffmann, P. Kopka, and E. Voges, "Thermooptical digital switch arrays in silica-on-silicon with defined zero-voltage state," IEEE J. Lightwave Technol. 16, 395-400 (1998).
[CrossRef]

S. P. Pogossian, L. Vescan, and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," IEEE J. Lightwave Technol. 16, 1851-1853 (1998).
[CrossRef]

J. C. Sturm, W. Wilson, and M. Iodice, "Thermal effects and scaling in organic light emitting flat panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

S. Sujecki, T. M. Benson, P. Sewell, and P. Kendall, "Novel vectorial analysis of optical waveguides," IEEE J. Lightwave Technol. 16, 1329-1335 (1998).
[CrossRef]

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

1997 (1)

O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997).
[CrossRef]

1996 (2)

I. Ilic, R. Scarmozzino, and R. M. Osgood, "Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits," IEEE J. Lightwave Technol. 14, 2813-2822 (1996).
[CrossRef]

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method," IEEE Photon. Technol. Lett. 8, 649-651 (1996).
[CrossRef]

1994 (1)

M. Okamura, and S. Suzuki, "Infrared photodetection using a-Si:H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
[CrossRef]

1992 (1)

G J. M. Krijnen, H. J. W. M. Hoekstra, P. V. Lambeck, T. J. M. A. Pompa, "Simple analytical description of performance of Y junctions," Electron. Lett. 28, 2072-2074 (1992).
[CrossRef]

1988 (2)

W. K. Burns, "Normal mode analysis of waveguide devices. Part I: theory," IEEE J. Lightwave Technol. 6, 1051-1057 (1988).
[CrossRef]

W. K. Burns, "Normal mode analysis of waveguide devices. Part II: Device output and crosstalk: theory," IEEE J. Lightwave Technol. 6, 1058-1068 (1988).
[CrossRef]

1978 (1)

Y. Silberberg, P. Perlmutter, and J. E. Baran, "Digital optical switch," Appl. Phys. Lett. 51, 1230-1232 (1978).
[CrossRef]

Attanansio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Baran, J. E.

Y. Silberberg, P. Perlmutter, and J. E. Baran, "Digital optical switch," Appl. Phys. Lett. 51, 1230-1232 (1978).
[CrossRef]

Benson, T. M.

S. Sujecki, T. M. Benson, P. Sewell, and P. Kendall, "Novel vectorial analysis of optical waveguides," IEEE J. Lightwave Technol. 16, 1329-1335 (1998).
[CrossRef]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Bresler, M. S.

O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997).
[CrossRef]

Burns, W. K.

W. K. Burns, "Normal mode analysis of waveguide devices. Part II: Device output and crosstalk: theory," IEEE J. Lightwave Technol. 6, 1058-1068 (1988).
[CrossRef]

W. K. Burns, "Normal mode analysis of waveguide devices. Part I: theory," IEEE J. Lightwave Technol. 6, 1051-1057 (1988).
[CrossRef]

Burrows, E.C.

M. N. Kahn, B. I. Miller, E.C. Burrows, and C. A. Burrus, "High-speed digital Y-branch switch/modulator with integrated passive tapers for fibre pigatailing," Electron. Lett. 35, 894-895 (1999).
[CrossRef]

Burrus, C. A.

M. N. Kahn, B. I. Miller, E.C. Burrows, and C. A. Burrus, "High-speed digital Y-branch switch/modulator with integrated passive tapers for fibre pigatailing," Electron. Lett. 35, 894-895 (1999).
[CrossRef]

Chen, R. T.

C. Jang, and R. T. Chen, "Polymer-Based 1x6 Thermo-optic switch incorporating an Elliptic TIR Waveguide Mirror," IEEE J. Lightwave Technol. 21, 1053-1058 (2003).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

De Rosa, R.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Della Corte, F. G.

L. Sirleto, M. Iodice, F. G. Della Corte, and I. Rendina, "Digital optical switch based on amorphous silicon waveguide," Opt. Eng. 42, 3417-3418 (2003).
[CrossRef]

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Deng, W.

Dubinger, J.

R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, "Performance and modeling of advanced Ti:LiNbO3," IEEE J. Lightwave Technol. 20, 92-99 (2002).
[CrossRef]

R. Krahenbuhl, M. M. Howerton, J. Dubinger, A. S. Greenblatt, and S. T. Vohra, "Reflective digital optical switch (RDOS) for DWDM optical network applications," IEEE Photon. Technol. Lett. 13, 34-36 (2001).
[CrossRef]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000).
[CrossRef]

Greenblatt, A. S.

R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, "Performance and modeling of advanced Ti:LiNbO3," IEEE J. Lightwave Technol. 20, 92-99 (2002).
[CrossRef]

R. Krahenbuhl, M. M. Howerton, J. Dubinger, A. S. Greenblatt, and S. T. Vohra, "Reflective digital optical switch (RDOS) for DWDM optical network applications," IEEE Photon. Technol. Lett. 13, 34-36 (2001).
[CrossRef]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000).
[CrossRef]

Hoekstra, H. J. W. M.

G J. M. Krijnen, H. J. W. M. Hoekstra, P. V. Lambeck, T. J. M. A. Pompa, "Simple analytical description of performance of Y junctions," Electron. Lett. 28, 2072-2074 (1992).
[CrossRef]

Hoffmann, M.

M. Hoffmann, P. Kopka, and E. Voges, "Thermooptical digital switch arrays in silica-on-silicon with defined zero-voltage state," IEEE J. Lightwave Technol. 16, 395-400 (1998).
[CrossRef]

Howerton, M. M.

R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, "Performance and modeling of advanced Ti:LiNbO3," IEEE J. Lightwave Technol. 20, 92-99 (2002).
[CrossRef]

R. Krahenbuhl, M. M. Howerton, J. Dubinger, A. S. Greenblatt, and S. T. Vohra, "Reflective digital optical switch (RDOS) for DWDM optical network applications," IEEE Photon. Technol. Lett. 13, 34-36 (2001).
[CrossRef]

Huang, W. P.

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method," IEEE Photon. Technol. Lett. 8, 649-651 (1996).
[CrossRef]

Ilic, I.

I. Ilic, R. Scarmozzino, and R. M. Osgood, "Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits," IEEE J. Lightwave Technol. 14, 2813-2822 (1996).
[CrossRef]

Iodice, M.

L. Sirleto, M. Iodice, F. G. Della Corte, and I. Rendina, "Digital optical switch based on amorphous silicon waveguide," Opt. Eng. 42, 3417-3418 (2003).
[CrossRef]

J. C. Sturm, W. Wilson, and M. Iodice, "Thermal effects and scaling in organic light emitting flat panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

Jang, C.

C. Jang, and R. T. Chen, "Polymer-Based 1x6 Thermo-optic switch incorporating an Elliptic TIR Waveguide Mirror," IEEE J. Lightwave Technol. 21, 1053-1058 (2003).
[CrossRef]

Kahn, M. N.

M. N. Kahn, B. I. Miller, E.C. Burrows, and C. A. Burrus, "High-speed digital Y-branch switch/modulator with integrated passive tapers for fibre pigatailing," Electron. Lett. 35, 894-895 (1999).
[CrossRef]

Kendall, P.

S. Sujecki, T. M. Benson, P. Sewell, and P. Kendall, "Novel vectorial analysis of optical waveguides," IEEE J. Lightwave Technol. 16, 1329-1335 (1998).
[CrossRef]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Kopka, P.

M. Hoffmann, P. Kopka, and E. Voges, "Thermooptical digital switch arrays in silica-on-silicon with defined zero-voltage state," IEEE J. Lightwave Technol. 16, 395-400 (1998).
[CrossRef]

Krahenbuhl, R.

R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, "Performance and modeling of advanced Ti:LiNbO3," IEEE J. Lightwave Technol. 20, 92-99 (2002).
[CrossRef]

R. Krahenbuhl, M. M. Howerton, J. Dubinger, A. S. Greenblatt, and S. T. Vohra, "Reflective digital optical switch (RDOS) for DWDM optical network applications," IEEE Photon. Technol. Lett. 13, 34-36 (2001).
[CrossRef]

Krijnen, G J. M.

G J. M. Krijnen, H. J. W. M. Hoekstra, P. V. Lambeck, T. J. M. A. Pompa, "Simple analytical description of performance of Y junctions," Electron. Lett. 28, 2072-2074 (1992).
[CrossRef]

Kudoyarova, V. K.

O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997).
[CrossRef]

Kurihara, T.

N. Ooba, S. Toyoda, and T. Kurihara, "Low crosstalk and low loss 1×8 digital optical switch using silicone resin waveguides," Electron. Lett. 35, 1364-1365 (1999).
[CrossRef]

Kuznetsov, A. M.

O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997).
[CrossRef]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Lambeck, P. V.

G J. M. Krijnen, H. J. W. M. Hoekstra, P. V. Lambeck, T. J. M. A. Pompa, "Simple analytical description of performance of Y junctions," Electron. Lett. 28, 2072-2074 (1992).
[CrossRef]

Li, X.

Liu, Z.

Lui, W.

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method," IEEE Photon. Technol. Lett. 8, 649-651 (1996).
[CrossRef]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Miller, B. I.

M. N. Kahn, B. I. Miller, E.C. Burrows, and C. A. Burrus, "High-speed digital Y-branch switch/modulator with integrated passive tapers for fibre pigatailing," Electron. Lett. 35, 894-895 (1999).
[CrossRef]

Moosburger, R.

R. Moosburger, and K. Petermann, "4×4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998).
[CrossRef]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Okamura, M.

M. Okamura, and S. Suzuki, "Infrared photodetection using a-Si:H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
[CrossRef]

Ooba, N.

N. Ooba, S. Toyoda, and T. Kurihara, "Low crosstalk and low loss 1×8 digital optical switch using silicone resin waveguides," Electron. Lett. 35, 1364-1365 (1999).
[CrossRef]

Osgood, R. M.

I. Ilic, R. Scarmozzino, and R. M. Osgood, "Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits," IEEE J. Lightwave Technol. 14, 2813-2822 (1996).
[CrossRef]

Perlmutter, P.

Y. Silberberg, P. Perlmutter, and J. E. Baran, "Digital optical switch," Appl. Phys. Lett. 51, 1230-1232 (1978).
[CrossRef]

Petermann, K.

R. Moosburger, and K. Petermann, "4×4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998).
[CrossRef]

Pogossian, S. P.

S. P. Pogossian, L. Vescan, and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," IEEE J. Lightwave Technol. 16, 1851-1853 (1998).
[CrossRef]

Pompa, T. J. M. A.

G J. M. Krijnen, H. J. W. M. Hoekstra, P. V. Lambeck, T. J. M. A. Pompa, "Simple analytical description of performance of Y junctions," Electron. Lett. 28, 2072-2074 (1992).
[CrossRef]

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000).
[CrossRef]

Rendina, I.

L. Sirleto, M. Iodice, F. G. Della Corte, and I. Rendina, "Digital optical switch based on amorphous silicon waveguide," Opt. Eng. 42, 3417-3418 (2003).
[CrossRef]

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000).
[CrossRef]

I. Ilic, R. Scarmozzino, and R. M. Osgood, "Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits," IEEE J. Lightwave Technol. 14, 2813-2822 (1996).
[CrossRef]

Sewell, P.

S. Sujecki, T. M. Benson, P. Sewell, and P. Kendall, "Novel vectorial analysis of optical waveguides," IEEE J. Lightwave Technol. 16, 1329-1335 (1998).
[CrossRef]

Silberberg, Y.

Y. Silberberg, P. Perlmutter, and J. E. Baran, "Digital optical switch," Appl. Phys. Lett. 51, 1230-1232 (1978).
[CrossRef]

Sirleto, L.

L. Sirleto, M. Iodice, F. G. Della Corte, and I. Rendina, "Digital optical switch based on amorphous silicon waveguide," Opt. Eng. 42, 3417-3418 (2003).
[CrossRef]

Sturm, J. C.

J. C. Sturm, W. Wilson, and M. Iodice, "Thermal effects and scaling in organic light emitting flat panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

Sujecki, S.

S. Sujecki, T. M. Benson, P. Sewell, and P. Kendall, "Novel vectorial analysis of optical waveguides," IEEE J. Lightwave Technol. 16, 1329-1335 (1998).
[CrossRef]

Sun, D.

Suzuki, S.

M. Okamura, and S. Suzuki, "Infrared photodetection using a-Si:H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
[CrossRef]

Terukov, E. I.

O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997).
[CrossRef]

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

Toyoda, S.

N. Ooba, S. Toyoda, and T. Kurihara, "Low crosstalk and low loss 1×8 digital optical switch using silicone resin waveguides," Electron. Lett. 35, 1364-1365 (1999).
[CrossRef]

Usev, O. B.

O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997).
[CrossRef]

Vescan, L.

S. P. Pogossian, L. Vescan, and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," IEEE J. Lightwave Technol. 16, 1851-1853 (1998).
[CrossRef]

Voges, E.

M. Hoffmann, P. Kopka, and E. Voges, "Thermooptical digital switch arrays in silica-on-silicon with defined zero-voltage state," IEEE J. Lightwave Technol. 16, 395-400 (1998).
[CrossRef]

Vohra, S. T.

R. Krahenbuhl, M. M. Howerton, J. Dubinger, A. S. Greenblatt, and S. T. Vohra, "Reflective digital optical switch (RDOS) for DWDM optical network applications," IEEE Photon. Technol. Lett. 13, 34-36 (2001).
[CrossRef]

Vonsovici, A.

S. P. Pogossian, L. Vescan, and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," IEEE J. Lightwave Technol. 16, 1851-1853 (1998).
[CrossRef]

Wilson, W.

J. C. Sturm, W. Wilson, and M. Iodice, "Thermal effects and scaling in organic light emitting flat panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Xu, C. L.

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method," IEEE Photon. Technol. Lett. 8, 649-651 (1996).
[CrossRef]

Yassievich, I. N.

O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997).
[CrossRef]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

Yokoyama, K.

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method," IEEE Photon. Technol. Lett. 8, 649-651 (1996).
[CrossRef]

Zha, Y.

Zhang, Y.

Appl. Phys. Lett. (2)

Y. Silberberg, P. Perlmutter, and J. E. Baran, "Digital optical switch," Appl. Phys. Lett. 51, 1230-1232 (1978).
[CrossRef]

O. B. Usev, A. M. Kuznetsov, E. I. Terukov, M. S. Bresler, V. K. Kudoyarova, I. N. Yassievich, B. P. ZaKharchenya, and W. Fuhs, "Room-temperature electroluminescence of erbium-doped amorphous hydrogenated silicon," Appl. Phys. Lett. 70, 240-242 (1997).
[CrossRef]

Electron. Lett. (3)

N. Ooba, S. Toyoda, and T. Kurihara, "Low crosstalk and low loss 1×8 digital optical switch using silicone resin waveguides," Electron. Lett. 35, 1364-1365 (1999).
[CrossRef]

G J. M. Krijnen, H. J. W. M. Hoekstra, P. V. Lambeck, T. J. M. A. Pompa, "Simple analytical description of performance of Y junctions," Electron. Lett. 28, 2072-2074 (1992).
[CrossRef]

M. N. Kahn, B. I. Miller, E.C. Burrows, and C. A. Burrus, "High-speed digital Y-branch switch/modulator with integrated passive tapers for fibre pigatailing," Electron. Lett. 35, 894-895 (1999).
[CrossRef]

IEEE J. Lightwave Technol. (8)

C. Jang, and R. T. Chen, "Polymer-Based 1x6 Thermo-optic switch incorporating an Elliptic TIR Waveguide Mirror," IEEE J. Lightwave Technol. 21, 1053-1058 (2003).
[CrossRef]

R. Krahenbuhl, M. M. Howerton, J. Dubinger, and A. S. Greenblatt, "Performance and modeling of advanced Ti:LiNbO3," IEEE J. Lightwave Technol. 20, 92-99 (2002).
[CrossRef]

W. K. Burns, "Normal mode analysis of waveguide devices. Part I: theory," IEEE J. Lightwave Technol. 6, 1051-1057 (1988).
[CrossRef]

W. K. Burns, "Normal mode analysis of waveguide devices. Part II: Device output and crosstalk: theory," IEEE J. Lightwave Technol. 6, 1058-1068 (1988).
[CrossRef]

M. Hoffmann, P. Kopka, and E. Voges, "Thermooptical digital switch arrays in silica-on-silicon with defined zero-voltage state," IEEE J. Lightwave Technol. 16, 395-400 (1998).
[CrossRef]

S. Sujecki, T. M. Benson, P. Sewell, and P. Kendall, "Novel vectorial analysis of optical waveguides," IEEE J. Lightwave Technol. 16, 1329-1335 (1998).
[CrossRef]

S. P. Pogossian, L. Vescan, and A. Vonsovici, "The single mode condition for semiconductor rib waveguides with large cross section," IEEE J. Lightwave Technol. 16, 1851-1853 (1998).
[CrossRef]

I. Ilic, R. Scarmozzino, and R. M. Osgood, "Investigation of the Pade approximant-based wide-angle beam propagation method for accurate modeling of waveguiding circuits," IEEE J. Lightwave Technol. 14, 2813-2822 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

J. C. Sturm, W. Wilson, and M. Iodice, "Thermal effects and scaling in organic light emitting flat panel displays," IEEE J. Sel. Top. Quantum Electron. 4, 75-82 (1998).
[CrossRef]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanansio, D. J. Fritz, G. J. McBrien, and D. E. Bossi. "A review of Lithium niobate modulators for fiber optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-80 (2000).
[CrossRef]

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Top. Quantum Electron. 6, 150-161 (2000).
[CrossRef]

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics," IEEE J. Sel. Top. Quantum Electron. 4, 997-1002 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

M. Okamura, and S. Suzuki, "Infrared photodetection using a-Si:H photodiode," IEEE Photon. Technol. Lett. 6, 412-414 (1994).
[CrossRef]

R. Krahenbuhl, M. M. Howerton, J. Dubinger, A. S. Greenblatt, and S. T. Vohra, "Reflective digital optical switch (RDOS) for DWDM optical network applications," IEEE Photon. Technol. Lett. 13, 34-36 (2001).
[CrossRef]

R. Moosburger, and K. Petermann, "4×4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photon. Technol. Lett. 10, 684-686 (1998).
[CrossRef]

W. P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, "The perfectly matched layer (PML) boundary condition for the beam propagation method," IEEE Photon. Technol. Lett. 8, 649-651 (1996).
[CrossRef]

Opt. Eng. (1)

L. Sirleto, M. Iodice, F. G. Della Corte, and I. Rendina, "Digital optical switch based on amorphous silicon waveguide," Opt. Eng. 42, 3417-3418 (2003).
[CrossRef]

Opt. Express (1)

Other (4)

W. H. G. Horsthuis, and M. B. J. Diemeer, "Components for multiple wavelength systems in polymer optoboard technology," IEEE LEOS 8th Annual Meeting Conference Proceedings 2, San Francisco, USA, 251-252 (1995).
[CrossRef]

OlympiOs Integrated Optics Software-Manual, http://www.c2v.nl.

Ansys 9.0 Release Guide, 2005, http://www.ansys.com.

D. Y. Smith, E. Shiles, and M. Inokuti, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, San Francisco, CA, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic top view not in scale of the device.

Fig. 2.
Fig. 2.

Schematic of the rib waveguide.

Fig. 3.
Fig. 3.

Propagation losses vs. SiO2 cladding thickness in the single-mode waveguide for TE and TM polarization.

Fig. 4.
Fig. 4.

FEM analysis meshed model.

Fig. 5.
Fig. 5.

Steady state 2D temperature profile and horizontal 1D profile in the center of guiding film (section AA′).

Fig. 6.
Fig. 6.

Vertical 1D steady state temperature profile in the center of guiding film (section CC′ of Fig. 5).

Fig. 7.
Fig. 7.

Transient temperature dynamic at the center of the heated waveguide (green) and just below the electrode (blue).

Fig. 8.
Fig. 8.

Optical crosstalk as a function of heater length and hot arm temperature increase.

Fig. 9.
Fig. 9.

Optical output intensity pattern.

Fig. 10.
Fig. 10.

Optical output crosstalk as a function of passive output waveguides length.

Tables (3)

Tables Icon

Table 1. Comparison between different DOS

Tables Icon

Table 2. Optical parameter used in the modal and BPM analysis

Tables Icon

Table 3. Thermal parameter used in the finite element analysis

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t < r ( 1 r 2 ) r > 0.5 t = w H r = h H
ρ c p T t = k 2 T + Q ( x , y , z , t )
T ( x , y , z , t ) t = 0 = T ̅
T s = h ( T S T A ) on the top surface
T s = 0 on the lateral surfaces
T = 20 ° C ( heat sink ) on the bottom surface

Metrics