Abstract

A novel layout is presented to minimize the size of an arrayedwaveguide grating (AWG) demultiplexer based on Si nanowire waveguides, in particular when a high diffraction order is required. A series of microbends are inserted in the middle of arrayed waveguides to increase the lightpath difference while keeping small separation between arrayed waveguides. A designed ultrasmall AWG with a narrow channel spacing of 0.8nm has a total size of only about 0.505mm×0.333mm (0.165mm2).

©2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology

Jing Wang, Zhen Sheng, Le Li, Albert Pang, Aimin Wu, Wei Li, Xi Wang, Shichang Zou, Minghao Qi, and Fuwan Gan
Opt. Express 22(8) 9395-9403 (2014)

Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides

Daoxin Dai, Zhi Wang, Jared F. Bauters, M.-C. Tien, Martijn J. R. Heck, Daniel J. Blumenthal, and John E Bowers
Opt. Express 19(15) 14130-14136 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [Crossref]
  2. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
    [Crossref]
  3. D. Dai and S. He, “Characteristic analysis of nano silicon rectangular waveguides for planar lightwave circuits of high integration,” Appl. Opt.45 (2006).
    [Crossref] [PubMed]
  4. Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs,” IEEE J. Select. Top. Quantum Electron. 8, 1090–1101 (2002).
    [Crossref]
  5. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 µm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
    [Crossref]
  6. D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of an ultra-small overlapped awg demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
    [Crossref]
  7. P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
    [Crossref] [PubMed]
  8. N.-N. Feng, G.-R. Zhou, C. Xu, and W.-P. Huang, “Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers,” J. Lightwave Technol. 20, 1976–1980, (2002).
    [Crossref]
  9. D. Dai and S. He, “Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon nanowire waveguides,” Opt. Lett., 31 (2006).
    [Crossref] [PubMed]

2006 (2)

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of an ultra-small overlapped awg demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[Crossref]

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

2005 (3)

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 µm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

2002 (2)

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs,” IEEE J. Select. Top. Quantum Electron. 8, 1090–1101 (2002).
[Crossref]

N.-N. Feng, G.-R. Zhou, C. Xu, and W.-P. Huang, “Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers,” J. Lightwave Technol. 20, 1976–1980, (2002).
[Crossref]

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 µm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Baets, R.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Beckx, S.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Bienstman, P.

Bogaerts, W.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Dai, D.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of an ultra-small overlapped awg demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[Crossref]

D. Dai and S. He, “Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon nanowire waveguides,” Opt. Lett., 31 (2006).
[Crossref] [PubMed]

D. Dai and S. He, “Characteristic analysis of nano silicon rectangular waveguides for planar lightwave circuits of high integration,” Appl. Opt.45 (2006).
[Crossref] [PubMed]

Dumon, P.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Feng, N.-N.

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

He, S.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of an ultra-small overlapped awg demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[Crossref]

D. Dai and S. He, “Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon nanowire waveguides,” Opt. Lett., 31 (2006).
[Crossref] [PubMed]

D. Dai and S. He, “Characteristic analysis of nano silicon rectangular waveguides for planar lightwave circuits of high integration,” Appl. Opt.45 (2006).
[Crossref] [PubMed]

Hibino, Y.

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs,” IEEE J. Select. Top. Quantum Electron. 8, 1090–1101 (2002).
[Crossref]

Huang, W.-P.

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Jaenen, P.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

Liu, L.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of an ultra-small overlapped awg demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[Crossref]

Luyssaert, B.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 µm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 µm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 µm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Taillaert, D.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Wiaux, V.

Wosinski, L.

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of an ultra-small overlapped awg demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[Crossref]

Wouters, J.

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

Xu, C.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Zhou, G.-R.

Electron. Lett. (2)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70×60 µm2 size based on Si photonic wire waveguides,” Electron. Lett. 41, 801–802 (2005).
[Crossref]

D. Dai, L. Liu, L. Wosinski, and S. He, “Design and fabrication of an ultra-small overlapped awg demultiplexer based on α-Si nanowire waveguides,” Electron. Lett. 42, 400–402 (2006).
[Crossref]

IEEE J. Select. Top. Quantum Electron. (2)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Select. Top. Quantum Electron. 11, 232–240 (2005).
[Crossref]

Y. Hibino, “Recent advances in high-density and large-scale AWG multi/demultiplexers with higher indexcontrast silica-based PLCs,” IEEE J. Select. Top. Quantum Electron. 8, 1090–1101 (2002).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express. (1)

P. Dumon, W. Bogaerts, D. Van Thourhout, D. Taillaert, R. Baets, J. Wouters, S. Beckx, and P. Jaenen, “Compact wavelength router based on a Silicon-on-insulator arrayed waveguide grating pigtailed to a fiber array,” Opt. Express. 14, 664–669 (2006).
[Crossref] [PubMed]

Other (2)

D. Dai and S. He, “Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon nanowire waveguides,” Opt. Lett., 31 (2006).
[Crossref] [PubMed]

D. Dai and S. He, “Characteristic analysis of nano silicon rectangular waveguides for planar lightwave circuits of high integration,” Appl. Opt.45 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic configuration for our present AWG with microbends.
Fig. 2.
Fig. 2. The flow chart for the layout design of the present AWG.
Fig. 3.
Fig. 3. The ratio η(=n B/n S) as the bending radius R increases.
Fig. 4.
Fig. 4. The parameters for different arrayed waveguides in the designed AWG. (a) total period number (2Ql ) of the microbends; (b) bending radius R 3l and arc angle θ3l ; (c) distance Δ xy .
Fig. 5.
Fig. 5. (a) The present AWG layout; (b) light propagation in the microbends simulated with a FDTD; (c) the calculated spectral response.
Fig. 6.
Fig. 6. Our Layout of an AWG with the same parameters as the AWG presented in [7].

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P i P i 1 = m λ c Δ P ,
P l 2 = n S S 1 l + n B R 1 l θ 1 l + n S S 2 l + n B 2 R 2 l θ 2 l + n S S 3 l + n B 3 ( 4 R 3 l θ 3 l ) Q l ,
P l ( 2 n S ) = S 1 l + η 1 R 1 l θ 1 l + S 2 l + η 2 R 2 l θ 2 l + S 3 l + η 3 ( 4 R 3 l θ 3 l ) Q l ,
Y l = ( S 1 l + L FPR ) sin α l + R 1 l sin θ 1 l + S 2 l + R 2 l = Y l 1 + Δ Y l ,
X l = ( S 1 l + L FPR ) cos α l + R 1 l ( 1 cos θ 1 l ) = X l 1 + Δ X l ,
L io 2 = X l R 2 l S 3 l ( 4 R 3 l sin θ 3 l ) Q l ,
S 1 l = ( b + d ) ( a + c ) ,
S 3 l = b a S 1 l ,
S 2 l = ( P l n S ) 2 [ η 1 R 1 l θ 1 l + η 2 R 2 l π 2 + η 3 ( 4 R 3 l θ 3 l ) Q l ] ( S 1 l + S 3 l ) ,
a=1sin α l +cos α l ,c=cos α l , b=( P l / n S )/2+ L FPR (sin α l cos α l )+ R 1l (sin θ 1l 1+cos θ 1l η 1 θ 1l )+ R 2l (1 η 2 π/2) η 3 (4 R 3l θ 3l ) Q l ( Y l1 X l1 ), d= L io /2 L FPR cos α l R 1l (1cos θ 1l )+ R 2l +(4 R 3l sin θ 3l ) Q l .
P 0 ( 2 n S ) = S 10 + η 1 R 10 θ 10 + S 20 + η 2 R 20 θ 20 + S 30 + η 3 ( 4 R 30 θ 30 ) Q 0 ,
Y 0 = ( S 10 + L FPR ) sin α 0 + R 10 sin θ 10 + S 20 + R 20 ,
X 0 = ( S 10 + L FPR ) cos α 0 + R 10 ( 1 cos θ 10 ) ,
L io 2 = X 0 R 20 S 30 ( 4 R 30 sin θ 30 ) Q 0 .

Metrics