Abstract

Finite element simulations of laser-induced heating in scanning probe microscopy are presented. The electromagnetic field is first simulated for a variety of tip and substrate materials, and for air and aqueous environments. This electromagnetic field, in the end of the tip and substrate under the tip, produces Joule heating. Using this Joule heat source, steady state thermal simulations are performed. As a result of the large enhancement of optical power by the tip-substrate cavity, predicted temperature rises can be over 3 orders of magnitude higher than the values predicted without a tip present, but the optical signal can be enhanced by over 10 orders. Gold tips and substrates are predicted to give the highest optical signal for a given temperature increase.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083–1085 (1995).
    [CrossRef] [PubMed]
  2. R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
    [CrossRef] [PubMed]
  3. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541–550 (2005).
    [CrossRef]
  4. R. Stockle, Y. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
    [CrossRef]
  5. N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174–180 (2003).
    [CrossRef]
  6. A. Downes, D. Salter, and A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys Chem. B 110, 6692–6708 (2006).
    [CrossRef] [PubMed]
  7. S.L. McCall and P.M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22, 1660–1662 (1980).
    [CrossRef]
  8. A. Hartschuh, N. Anderson, and L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
    [CrossRef] [PubMed]
  9. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging,” Phys. Rev. Lett. 92, 220801 (2004).
    [CrossRef] [PubMed]
  10. P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
    [CrossRef]
  11. R. Milner and D. Richards, “The role of tip plasmons in near-field Raman microscopy,” J. Microsc.,  202, 66–71 (2001).
    [CrossRef] [PubMed]
  12. I. Notingher and A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699–15706 (2005).
    [CrossRef]
  13. M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, “Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy,” J. Phys. Chem. B 107, 1574–1584 (2003).
    [CrossRef]
  14. Y. Kawata, C. Xu, and W. Denk, “Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip,” J. Appl. Phys. 85, 1294–1301 (1999).
    [CrossRef]
  15. L. Novotny, R. Bian, and X. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]
  16. G. Kumar, C. Safvan, F. Rajgara, and D. Mathur, “Dissociative ionization of molecules by intense laser fields at 532 nm and 1012–1014 W cm-2,” J. Phys. B 27, 2981–2991 (1994).
    [CrossRef]
  17. J. Weaver and H. Frederikse, in CRC Handbook of Chemistry and Physics, edited by D. Lide (CRC Press, Boca Raton, FL, 1995), Sec. 12, p. 126.

2006 (1)

A. Downes, D. Salter, and A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys Chem. B 110, 6692–6708 (2006).
[CrossRef] [PubMed]

2005 (2)

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541–550 (2005).
[CrossRef]

I. Notingher and A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699–15706 (2005).
[CrossRef]

2004 (2)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

2003 (3)

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, “Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy,” J. Phys. Chem. B 107, 1574–1584 (2003).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174–180 (2003).
[CrossRef]

A. Hartschuh, N. Anderson, and L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

2001 (1)

R. Milner and D. Richards, “The role of tip plasmons in near-field Raman microscopy,” J. Microsc.,  202, 66–71 (2001).
[CrossRef] [PubMed]

2000 (2)

R. Stockle, Y. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

1999 (1)

Y. Kawata, C. Xu, and W. Denk, “Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip,” J. Appl. Phys. 85, 1294–1301 (1999).
[CrossRef]

1997 (1)

L. Novotny, R. Bian, and X. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

1995 (1)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

1994 (1)

G. Kumar, C. Safvan, F. Rajgara, and D. Mathur, “Dissociative ionization of molecules by intense laser fields at 532 nm and 1012–1014 W cm-2,” J. Phys. B 27, 2981–2991 (1994).
[CrossRef]

1980 (1)

S.L. McCall and P.M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22, 1660–1662 (1980).
[CrossRef]

Anderson, N.

A. Hartschuh, N. Anderson, and L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

Bian, R.

L. Novotny, R. Bian, and X. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Deckert, V.

R. Stockle, Y. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Denk, W.

Y. Kawata, C. Xu, and W. Denk, “Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip,” J. Appl. Phys. 85, 1294–1301 (1999).
[CrossRef]

Dickmann, K.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Downes, A.

A. Downes, D. Salter, and A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys Chem. B 110, 6692–6708 (2006).
[CrossRef] [PubMed]

Elfick, A.

A. Downes, D. Salter, and A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys Chem. B 110, 6692–6708 (2006).
[CrossRef] [PubMed]

I. Notingher and A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699–15706 (2005).
[CrossRef]

Ertl, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541–550 (2005).
[CrossRef]

Frederikse, H.

J. Weaver and H. Frederikse, in CRC Handbook of Chemistry and Physics, edited by D. Lide (CRC Press, Boca Raton, FL, 1995), Sec. 12, p. 126.

Geshev, P.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Hartschuh, A.

A. Hartschuh, N. Anderson, and L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174–180 (2003).
[CrossRef]

Hietschold, M.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174–180 (2003).
[CrossRef]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174–180 (2003).
[CrossRef]

Kawata, Y.

Y. Kawata, C. Xu, and W. Denk, “Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip,” J. Appl. Phys. 85, 1294–1301 (1999).
[CrossRef]

Keilmann, F.

R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

Klein, S.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Klymyshyn, N.

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, “Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy,” J. Phys. Chem. B 107, 1574–1584 (2003).
[CrossRef]

Kumar, G.

G. Kumar, C. Safvan, F. Rajgara, and D. Mathur, “Dissociative ionization of molecules by intense laser fields at 532 nm and 1012–1014 W cm-2,” J. Phys. B 27, 2981–2991 (1994).
[CrossRef]

Lu, H.

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, “Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy,” J. Phys. Chem. B 107, 1574–1584 (2003).
[CrossRef]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Mathur, D.

G. Kumar, C. Safvan, F. Rajgara, and D. Mathur, “Dissociative ionization of molecules by intense laser fields at 532 nm and 1012–1014 W cm-2,” J. Phys. B 27, 2981–2991 (1994).
[CrossRef]

McCall, S.L.

S.L. McCall and P.M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22, 1660–1662 (1980).
[CrossRef]

Micic, M.

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, “Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy,” J. Phys. Chem. B 107, 1574–1584 (2003).
[CrossRef]

Milner, R.

R. Milner and D. Richards, “The role of tip plasmons in near-field Raman microscopy,” J. Microsc.,  202, 66–71 (2001).
[CrossRef] [PubMed]

Notingher, I.

I. Notingher and A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699–15706 (2005).
[CrossRef]

Novotny, L.

A. Hartschuh, N. Anderson, and L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

L. Novotny, R. Bian, and X. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Pettinger, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541–550 (2005).
[CrossRef]

Picardi, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541–550 (2005).
[CrossRef]

Platzman, P.M.

S.L. McCall and P.M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22, 1660–1662 (1980).
[CrossRef]

Rajgara, F.

G. Kumar, C. Safvan, F. Rajgara, and D. Mathur, “Dissociative ionization of molecules by intense laser fields at 532 nm and 1012–1014 W cm-2,” J. Phys. B 27, 2981–2991 (1994).
[CrossRef]

Ren, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541–550 (2005).
[CrossRef]

Richards, D.

R. Milner and D. Richards, “The role of tip plasmons in near-field Raman microscopy,” J. Microsc.,  202, 66–71 (2001).
[CrossRef] [PubMed]

Safvan, C.

G. Kumar, C. Safvan, F. Rajgara, and D. Mathur, “Dissociative ionization of molecules by intense laser fields at 532 nm and 1012–1014 W cm-2,” J. Phys. B 27, 2981–2991 (1994).
[CrossRef]

Salter, D.

A. Downes, D. Salter, and A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys Chem. B 110, 6692–6708 (2006).
[CrossRef] [PubMed]

Schuster, R.

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541–550 (2005).
[CrossRef]

Stockle, R.

R. Stockle, Y. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Suh, Y.

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, “Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy,” J. Phys. Chem. B 107, 1574–1584 (2003).
[CrossRef]

R. Stockle, Y. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Watanabe, H.

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174–180 (2003).
[CrossRef]

Weaver, J.

J. Weaver and H. Frederikse, in CRC Handbook of Chemistry and Physics, edited by D. Lide (CRC Press, Boca Raton, FL, 1995), Sec. 12, p. 126.

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Witting, T.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Xie, X.

L. Novotny, R. Bian, and X. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Xu, C.

Y. Kawata, C. Xu, and W. Denk, “Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip,” J. Appl. Phys. 85, 1294–1301 (1999).
[CrossRef]

Yano, T.

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174–180 (2003).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Zenobi, R.

R. Stockle, Y. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

Chem. Phys. Lett. (2)

R. Stockle, Y. Suh, V. Deckert, and R. Zenobi, “Nanoscale chemical analysis by tip-enhanced Raman spectroscopy,” Chem. Phys. Lett. 318, 131–136 (2000).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, “Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy,” Chem. Phys. Lett. 376, 174–180 (2003).
[CrossRef]

J. Appl. Phys. (1)

Y. Kawata, C. Xu, and W. Denk, “Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip,” J. Appl. Phys. 85, 1294–1301 (1999).
[CrossRef]

J. Microsc. (2)

R. Milner and D. Richards, “The role of tip plasmons in near-field Raman microscopy,” J. Microsc.,  202, 66–71 (2001).
[CrossRef] [PubMed]

A. Hartschuh, N. Anderson, and L. Novotny, “Near-field Raman spectroscopy using a sharp metal tip,” J. Microsc. 210, 234–240 (2003).
[CrossRef] [PubMed]

J. Phys Chem. B (1)

A. Downes, D. Salter, and A. Elfick, “Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy,” J. Phys Chem. B 110, 6692–6708 (2006).
[CrossRef] [PubMed]

J. Phys. B (1)

G. Kumar, C. Safvan, F. Rajgara, and D. Mathur, “Dissociative ionization of molecules by intense laser fields at 532 nm and 1012–1014 W cm-2,” J. Phys. B 27, 2981–2991 (1994).
[CrossRef]

J. Phys. Chem. B (2)

I. Notingher and A. Elfick, “Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips,” J. Phys. Chem. B 109, 15699–15706 (2005).
[CrossRef]

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, “Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy,” J. Phys. Chem. B 107, 1574–1584 (2003).
[CrossRef]

J. Raman Spectrosc. (1)

B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, “Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields,” J. Raman Spectrosc. 36, 541–550 (2005).
[CrossRef]

Phys. Rev. B (2)

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, “Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface,” Phys. Rev. B 70, 075402 (2004).
[CrossRef]

S.L. McCall and P.M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22, 1660–1662 (1980).
[CrossRef]

Phys. Rev. Lett. (3)

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, and S. Kawata, “Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging,” Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, “Complex Optical Constants on a Subwavelength Scale,” Phys. Rev. Lett. 85, 3029–3032 (2000).
[CrossRef] [PubMed]

L. Novotny, R. Bian, and X. Xie, “Theory of Nanometric Optical Tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Science (1)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, “Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Other (1)

J. Weaver and H. Frederikse, in CRC Handbook of Chemistry and Physics, edited by D. Lide (CRC Press, Boca Raton, FL, 1995), Sec. 12, p. 126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Gold tip (20 nm radius) and gold substrate, separated by 2 nm, illuminated with 1 mW µm-2 of 533 nm p-polarized radiation incident along the arrow, at 45 degrees to the substrate plane. (a) Electric field simulations, in units of V m-1. (b) Resultant heat generation, in units of W m-3. (c) Temperature simulations, in Celsius. Dotted lines display the positions of line profiles used in Figs 3 and 4.

Fig. 2.
Fig. 2.

Temperature profiles normal to a gold surface, below air or water, with no tip present. Illumination is with 1 mW µm-2 of p-polarized radiation incident at 45 degrees to the vertical tip axis, at a wavelength of 533 nm. The temperature is fixed at 20 °C at the top and bottom of the model: at -40 and +240 nm.

Fig. 3.
Fig. 3.

Temperature profiles for various tip and substrate materials, and surrounding media. The line profiles (displayed in Fig. 1c) are in the vertical direction, from the tip (left), crossing the 2 nm gap to the substrate (right). Illumination is 1 mW µm-2 of p-polarized radiation incident at 45 degrees to the vertical tip axis, and the wavelength is chosen to give the maximum electric field.

Fig. 4.
Fig. 4.

Temperature profiles for various tip and substrate materials, and surrounding media. The line profiles (displayed in Fig. 1c) are in the horizontal direction, on a plane midway between the tip apex and substrate. Illumination is 1 mW µm-2 of p-polarized radiation incident at 45 degrees to the vertical tip axis, and the wavelength is chosen to give the maximum electric field.

Tables (1)

Tables Icon

Table 1. Thermal and optical characteristics for tip-enhanced and far field optical microscopy

Metrics