Abstract

Finite element simulations of laser-induced heating in scanning probe microscopy are presented. The electromagnetic field is first simulated for a variety of tip and substrate materials, and for air and aqueous environments. This electromagnetic field, in the end of the tip and substrate under the tip, produces Joule heating. Using this Joule heat source, steady state thermal simulations are performed. As a result of the large enhancement of optical power by the tip-substrate cavity, predicted temperature rises can be over 3 orders of magnitude higher than the values predicted without a tip present, but the optical signal can be enhanced by over 10 orders. Gold tips and substrates are predicted to give the highest optical signal for a given temperature increase.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
    [CrossRef] [PubMed]
  2. R. Hillenbrand, and F. Keilmann, "Complex Optical Constants on a Subwavelength Scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
    [CrossRef] [PubMed]
  3. B. Pettinger, B. Ren, G. Picardi, R. Schuster and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541-550 (2005).
    [CrossRef]
  4. R. Stockle, Y. Suh, V. Deckert and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000).
    [CrossRef]
  5. N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chem. Phys. Lett. 376, 174-180 (2003).
    [CrossRef]
  6. A. Downes, D. Salter, and A. Elfick, "Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy," J. Phys Chem. B 110, 6692-6708 (2006).
    [CrossRef] [PubMed]
  7. S.L. McCall and P.M. Platzman, "Raman scattering from chemisorbed molecules at surfaces," Phys. Rev. B 22, 1660-1662 (1980).
    [CrossRef]
  8. A. Hartschuh, N. Anderson and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210, 234-240 (2003).
    [CrossRef] [PubMed]
  9. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004).
    [CrossRef] [PubMed]
  10. P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev. B 70, 075402 (2004).
    [CrossRef]
  11. R. Milner, and D. Richards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc.,  202, 66-71 (2001).
    [CrossRef] [PubMed]
  12. I. Notingher, and A. Elfick, "Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips," J. Phys. Chem. B 109, 15699-15706 (2005).
    [CrossRef]
  13. M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, "Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
    [CrossRef]
  14. Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip," J. Appl. Phys. 85, 1294-1301 (1999).
    [CrossRef]
  15. L. Novotny, R. Bian, and X. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
    [CrossRef]
  16. G. Kumar, C. Safvan, F. Rajgara and D. Mathur, "Dissociative ionization of molecules by intense laser fields at 532 nm and 1012-1014 W cm-2," J. Phys. B 27, 2981-2991 (1994).
    [CrossRef]
  17. J. Weaver, and H. Frederikse, in CRC Handbook of Chemistry and Physics, edited by D. Lide (CRC Press, Boca Raton, FL, 1995), Sec. 12, p. 126.

2006

A. Downes, D. Salter, and A. Elfick, "Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy," J. Phys Chem. B 110, 6692-6708 (2006).
[CrossRef] [PubMed]

2005

B. Pettinger, B. Ren, G. Picardi, R. Schuster and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541-550 (2005).
[CrossRef]

I. Notingher, and A. Elfick, "Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips," J. Phys. Chem. B 109, 15699-15706 (2005).
[CrossRef]

2004

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev. B 70, 075402 (2004).
[CrossRef]

2003

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, "Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

A. Hartschuh, N. Anderson and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210, 234-240 (2003).
[CrossRef] [PubMed]

2001

R. Milner, and D. Richards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc.,  202, 66-71 (2001).
[CrossRef] [PubMed]

2000

R. Stockle, Y. Suh, V. Deckert and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

R. Hillenbrand, and F. Keilmann, "Complex Optical Constants on a Subwavelength Scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

1999

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip," J. Appl. Phys. 85, 1294-1301 (1999).
[CrossRef]

1997

L. Novotny, R. Bian, and X. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

1995

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

1994

G. Kumar, C. Safvan, F. Rajgara and D. Mathur, "Dissociative ionization of molecules by intense laser fields at 532 nm and 1012-1014 W cm-2," J. Phys. B 27, 2981-2991 (1994).
[CrossRef]

1980

S.L. McCall and P.M. Platzman, "Raman scattering from chemisorbed molecules at surfaces," Phys. Rev. B 22, 1660-1662 (1980).
[CrossRef]

Anderson, N.

A. Hartschuh, N. Anderson and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210, 234-240 (2003).
[CrossRef] [PubMed]

Bian, R.

L. Novotny, R. Bian, and X. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Deckert, V.

R. Stockle, Y. Suh, V. Deckert and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

Denk, W.

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip," J. Appl. Phys. 85, 1294-1301 (1999).
[CrossRef]

Dickmann, K.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Downes, A.

A. Downes, D. Salter, and A. Elfick, "Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy," J. Phys Chem. B 110, 6692-6708 (2006).
[CrossRef] [PubMed]

Elfick, A.

A. Downes, D. Salter, and A. Elfick, "Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy," J. Phys Chem. B 110, 6692-6708 (2006).
[CrossRef] [PubMed]

I. Notingher, and A. Elfick, "Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips," J. Phys. Chem. B 109, 15699-15706 (2005).
[CrossRef]

Ertl, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541-550 (2005).
[CrossRef]

Geshev, P.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Hartschuh, A.

A. Hartschuh, N. Anderson and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210, 234-240 (2003).
[CrossRef] [PubMed]

Hashimoto, M.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Hayazawa, N.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

Hietschold, M.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand, and F. Keilmann, "Complex Optical Constants on a Subwavelength Scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Ichimura, T.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

Inouye, Y.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

Kawata, S.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

Kawata, Y.

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip," J. Appl. Phys. 85, 1294-1301 (1999).
[CrossRef]

Keilmann, F.

R. Hillenbrand, and F. Keilmann, "Complex Optical Constants on a Subwavelength Scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Klein, S.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Klymyshyn, N.

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, "Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

Kumar, G.

G. Kumar, C. Safvan, F. Rajgara and D. Mathur, "Dissociative ionization of molecules by intense laser fields at 532 nm and 1012-1014 W cm-2," J. Phys. B 27, 2981-2991 (1994).
[CrossRef]

Lu, H.

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, "Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Mathur, D.

G. Kumar, C. Safvan, F. Rajgara and D. Mathur, "Dissociative ionization of molecules by intense laser fields at 532 nm and 1012-1014 W cm-2," J. Phys. B 27, 2981-2991 (1994).
[CrossRef]

McCall, S.L.

S.L. McCall and P.M. Platzman, "Raman scattering from chemisorbed molecules at surfaces," Phys. Rev. B 22, 1660-1662 (1980).
[CrossRef]

Micic, M.

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, "Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

Milner, R.

R. Milner, and D. Richards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc.,  202, 66-71 (2001).
[CrossRef] [PubMed]

Notingher, I.

I. Notingher, and A. Elfick, "Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips," J. Phys. Chem. B 109, 15699-15706 (2005).
[CrossRef]

Novotny, L.

A. Hartschuh, N. Anderson and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210, 234-240 (2003).
[CrossRef] [PubMed]

L. Novotny, R. Bian, and X. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Pettinger, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541-550 (2005).
[CrossRef]

Picardi, G.

B. Pettinger, B. Ren, G. Picardi, R. Schuster and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541-550 (2005).
[CrossRef]

Platzman, P.M.

S.L. McCall and P.M. Platzman, "Raman scattering from chemisorbed molecules at surfaces," Phys. Rev. B 22, 1660-1662 (1980).
[CrossRef]

Rajgara, F.

G. Kumar, C. Safvan, F. Rajgara and D. Mathur, "Dissociative ionization of molecules by intense laser fields at 532 nm and 1012-1014 W cm-2," J. Phys. B 27, 2981-2991 (1994).
[CrossRef]

Ren, B.

B. Pettinger, B. Ren, G. Picardi, R. Schuster and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541-550 (2005).
[CrossRef]

Richards, D.

R. Milner, and D. Richards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc.,  202, 66-71 (2001).
[CrossRef] [PubMed]

Safvan, C.

G. Kumar, C. Safvan, F. Rajgara and D. Mathur, "Dissociative ionization of molecules by intense laser fields at 532 nm and 1012-1014 W cm-2," J. Phys. B 27, 2981-2991 (1994).
[CrossRef]

Salter, D.

A. Downes, D. Salter, and A. Elfick, "Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy," J. Phys Chem. B 110, 6692-6708 (2006).
[CrossRef] [PubMed]

Schuster, R.

B. Pettinger, B. Ren, G. Picardi, R. Schuster and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541-550 (2005).
[CrossRef]

Stockle, R.

R. Stockle, Y. Suh, V. Deckert and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

Suh, Y.

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, "Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

R. Stockle, Y. Suh, V. Deckert and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

Watanabe, H.

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Witting, T.

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev. B 70, 075402 (2004).
[CrossRef]

Xie, X.

L. Novotny, R. Bian, and X. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Xu, C.

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip," J. Appl. Phys. 85, 1294-1301 (1999).
[CrossRef]

Yano, T.

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Zenobi, R.

R. Stockle, Y. Suh, V. Deckert and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

Chem. Phys. Lett.

R. Stockle, Y. Suh, V. Deckert and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chem. Phys. Lett. 318, 131-136 (2000).
[CrossRef]

N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chem. Phys. Lett. 376, 174-180 (2003).
[CrossRef]

J. Appl. Phys.

Y. Kawata, C. Xu, and W. Denk, "Feasibility of molecular-resolution fluorescence near-field microscopy using multi-photon absorption and field enhancement near a sharp tip," J. Appl. Phys. 85, 1294-1301 (1999).
[CrossRef]

J. Microsc.

R. Milner, and D. Richards, "The role of tip plasmons in near-field Raman microscopy," J. Microsc.,  202, 66-71 (2001).
[CrossRef] [PubMed]

A. Hartschuh, N. Anderson and L. Novotny, "Near-field Raman spectroscopy using a sharp metal tip," J. Microsc. 210, 234-240 (2003).
[CrossRef] [PubMed]

J. Phys Chem. B

A. Downes, D. Salter, and A. Elfick, "Finite element simulations of tip-enhanced Raman and fluorescence spectroscopy," J. Phys Chem. B 110, 6692-6708 (2006).
[CrossRef] [PubMed]

J. Phys. B

G. Kumar, C. Safvan, F. Rajgara and D. Mathur, "Dissociative ionization of molecules by intense laser fields at 532 nm and 1012-1014 W cm-2," J. Phys. B 27, 2981-2991 (1994).
[CrossRef]

J. Phys. Chem. B

I. Notingher, and A. Elfick, "Effect of Sample and Substrate Electric Properties on the Electric Field Enhancement at the Apex of SPM Nanotips," J. Phys. Chem. B 109, 15699-15706 (2005).
[CrossRef]

M. Micic, N. Klymyshyn, Y. Suh, and H. Lu, "Finite Element Method Simulation of the Field Distribution for AFM Tip-Enhanced Surface-Enhanced Raman Scanning Microscopy," J. Phys. Chem. B 107, 1574-1584 (2003).
[CrossRef]

J. Raman Spectrosc.

B. Pettinger, B. Ren, G. Picardi, R. Schuster and G. Ertl, "Tip-enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields," J. Raman Spectrosc. 36, 541-550 (2005).
[CrossRef]

Phys. Rev. B

P. Geshev, S. Klein, T. Witting, K. Dickmann, and M. Hietschold, "Calculation of the electric-field enhancement at nanoparticles of arbitrary shape in close proximity to a metallic surface," Phys. Rev. B 70, 075402 (2004).
[CrossRef]

S.L. McCall and P.M. Platzman, "Raman scattering from chemisorbed molecules at surfaces," Phys. Rev. B 22, 1660-1662 (1980).
[CrossRef]

Phys. Rev. Lett.

T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye and S. Kawata, "Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nano-imaging," Phys. Rev. Lett. 92, 220801 (2004).
[CrossRef] [PubMed]

R. Hillenbrand, and F. Keilmann, "Complex Optical Constants on a Subwavelength Scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

L. Novotny, R. Bian, and X. Xie, "Theory of Nanometric Optical Tweezers," Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Science

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Other

J. Weaver, and H. Frederikse, in CRC Handbook of Chemistry and Physics, edited by D. Lide (CRC Press, Boca Raton, FL, 1995), Sec. 12, p. 126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Gold tip (20 nm radius) and gold substrate, separated by 2 nm, illuminated with 1 mW µm-2 of 533 nm p-polarized radiation incident along the arrow, at 45 degrees to the substrate plane. (a) Electric field simulations, in units of V m-1. (b) Resultant heat generation, in units of W m-3. (c) Temperature simulations, in Celsius. Dotted lines display the positions of line profiles used in Figs 3 and 4.

Fig. 2.
Fig. 2.

Temperature profiles normal to a gold surface, below air or water, with no tip present. Illumination is with 1 mW µm-2 of p-polarized radiation incident at 45 degrees to the vertical tip axis, at a wavelength of 533 nm. The temperature is fixed at 20 °C at the top and bottom of the model: at -40 and +240 nm.

Fig. 3.
Fig. 3.

Temperature profiles for various tip and substrate materials, and surrounding media. The line profiles (displayed in Fig. 1c) are in the vertical direction, from the tip (left), crossing the 2 nm gap to the substrate (right). Illumination is 1 mW µm-2 of p-polarized radiation incident at 45 degrees to the vertical tip axis, and the wavelength is chosen to give the maximum electric field.

Fig. 4.
Fig. 4.

Temperature profiles for various tip and substrate materials, and surrounding media. The line profiles (displayed in Fig. 1c) are in the horizontal direction, on a plane midway between the tip apex and substrate. Illumination is 1 mW µm-2 of p-polarized radiation incident at 45 degrees to the vertical tip axis, and the wavelength is chosen to give the maximum electric field.

Tables (1)

Tables Icon

Table 1. Thermal and optical characteristics for tip-enhanced and far field optical microscopy

Metrics