Abstract

We report a simple and robust computer-based active interferometer stabilization scheme which does not require modulation of the interfering beams and relies on an error signal which is linearly related to the optical path difference. In this setup, a non-collinearly propagating reference laser beam stabilizes the interference output of the laser light propagating collinearly through the interferometer. This stabilization scheme enables adjustable phase control with 20 ms switching times in the range from 0.02π radians to 6π radians at 632.8 nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Gray, D. E. McClelland, M. Barton, and S. Kawamura, "A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer," Opt. Quant. Electron. 31, 571-582 (1999).Q1
    [CrossRef]
  2. K. A. Jensen, R. J. Larson, S. D. Bergeson, and E. F. McCormack "Exploring closed-loop feedback control using experimenets in optics," arXiv:physics (2001), http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:physics/0106091.
  3. A. A. Freschi, and J. Frejlich, "Adjustable phase control in stabilized interferometry," Opt. Lett. 20, 635-637 (1995).
    [CrossRef] [PubMed]
  4. M. C. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
    [CrossRef]
  5. H. Iwai, C. FangYen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari and M. S. Feld, "Quantitative phase imaging using stabilized phase-shifting low-coherence interferometery," Opt. Lett. 29, 2399-2401 (2004).
    [CrossRef] [PubMed]
  6. P. Horowitz, and W. Hill, Art of Electronics (Cambridge University Press, New York, 2nd Ed., 1989)
  7. J. Bechhoefer, "Feedback for physicists: A tutorial essay on control," Rev. Mod. Phys. 77, 783-836 (2005).
    [CrossRef]
  8. E. O. Potma, C. L. Evans, and X. S. Xie, "Heterodyne coherent anti-Stokes Raman scattring (CARS) imaging," Opt. Lett. 31, 241-243 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (1)

J. Bechhoefer, "Feedback for physicists: A tutorial essay on control," Rev. Mod. Phys. 77, 783-836 (2005).
[CrossRef]

2004 (1)

2002 (1)

M. C. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

1999 (1)

M. B. Gray, D. E. McClelland, M. Barton, and S. Kawamura, "A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer," Opt. Quant. Electron. 31, 571-582 (1999).Q1
[CrossRef]

1995 (1)

Barbosa, M. C.

M. C. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

Barton, M.

M. B. Gray, D. E. McClelland, M. Barton, and S. Kawamura, "A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer," Opt. Quant. Electron. 31, 571-582 (1999).Q1
[CrossRef]

Bechhoefer, J.

J. Bechhoefer, "Feedback for physicists: A tutorial essay on control," Rev. Mod. Phys. 77, 783-836 (2005).
[CrossRef]

de Oliveira, I.

M. C. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

Evans, C. L.

Frejlich, J.

M. C. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

A. A. Freschi, and J. Frejlich, "Adjustable phase control in stabilized interferometry," Opt. Lett. 20, 635-637 (1995).
[CrossRef] [PubMed]

Freschi, A. A.

Gray, M. B.

M. B. Gray, D. E. McClelland, M. Barton, and S. Kawamura, "A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer," Opt. Quant. Electron. 31, 571-582 (1999).Q1
[CrossRef]

Iwai, H.

Kawamura, S.

M. B. Gray, D. E. McClelland, M. Barton, and S. Kawamura, "A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer," Opt. Quant. Electron. 31, 571-582 (1999).Q1
[CrossRef]

McClelland, D. E.

M. B. Gray, D. E. McClelland, M. Barton, and S. Kawamura, "A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer," Opt. Quant. Electron. 31, 571-582 (1999).Q1
[CrossRef]

Potma, E. O.

Xie, X. S.

Opt. Commun. (1)

M. C. Barbosa, I. de Oliveira, and J. Frejlich, "Feedback operation for fringe-locked photorefractive running hologram," Opt. Commun. 201, 293-299 (2002).
[CrossRef]

Opt. Lett. (3)

Opt. Quant. Electron. (1)

M. B. Gray, D. E. McClelland, M. Barton, and S. Kawamura, "A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer," Opt. Quant. Electron. 31, 571-582 (1999).Q1
[CrossRef]

Rev. Mod. Phys. (1)

J. Bechhoefer, "Feedback for physicists: A tutorial essay on control," Rev. Mod. Phys. 77, 783-836 (2005).
[CrossRef]

Other (2)

K. A. Jensen, R. J. Larson, S. D. Bergeson, and E. F. McCormack "Exploring closed-loop feedback control using experimenets in optics," arXiv:physics (2001), http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:physics/0106091.

P. Horowitz, and W. Hill, Art of Electronics (Cambridge University Press, New York, 2nd Ed., 1989)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the experimental setup employing He-Ne laser as reference (r) laser to stabilize the interferometer. BS1, BS2, BS3: beamsplitters; F: interference filters; W: wedge plate; PD1, PD2, PD3: photodiodes; L: diverging lens; P: piezo (AE0505D08, Thorlabs Inc.) ; R =20kΩ; and C =6 µF. The angles of the beams (exaggerated) reflected and transmitted at BS2 after passing through the wedge plate are depicted in the inset.

Fig. 2.
Fig. 2.

Recorded linear dependence of the error signal on the optical path difference between the two beams (refer to Eqs. (3) and (4)).

Fig. 3.
Fig. 3.

(a) Free-running output from the interferometer. (b) Stabilized output of the interferometer locked at Δφd =0.

Fig. 4.
Fig. 4.

Normalized Fourier spectra of the OPO interference output in the absence (red line) and the in the presence (green line) of stabilization.

Fig. 5.
Fig. 5.

Demonstration of adjustable phase control: (a) Δφd was changed in steps of 0.2π @ 632.8 nm every 2 s; the net phase change in 50 s is about 5π radians; the gain factor was chosen to be 20. (b) Switching the optical phase difference from 0 radians to π, 2π, 3π, and 4π radians respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V 1 = 𝓞 1 + 𝓐 1 sin Δ ϕ
V 2 = 𝓞 2 + 𝓐 2 cos Δ ϕ
Δ ϕ = 𝓤 { arctan ( V 1 𝓞 1 V 2 𝓞 2 × 𝓐 2 𝓐 1 ) }
e = g × ( Δ ϕ Δ ϕ d )

Metrics