Abstract

A three-dimension(3D)/two-dimension(2D) convertible display system is proposed. The proposed system realizes a thin structure by adopting a pinhole array to generate point light sources for 3D display mode from a backlight source. The optical efficiency of 2D display mode is also enhanced using polarization control. By experiments, the proposed method was proven and compared with a previous one.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional integral display using plastic optical fibers

Youngmin Kim, Heejin Choi, Seong-Woo Cho, Yunhee Kim, Joohwan Kim, Gilbae Park, and Byoungho Lee
Appl. Opt. 46(29) 7149-7154 (2007)

Three-dimensional-two-dimensional mixed display system using integral imaging with an active pinhole array on a liquid crystal panel

Heejin Choi, Joohwan Kim, Seong-Woo Cho, Yunhee Kim, Jae Byung Park, and Byoungho Lee
Appl. Opt. 47(13) 2207-2214 (2008)

Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array

Yunhee Kim, Joohwan Kim, Jin-Mo Kang, Jae-Hyun Jung, Heejin Choi, and Byoungho Lee
Opt. Express 15(26) 18253-18267 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographie integrale,” C. R. Acad, Sci. 146, 446–451 (1908).
  2. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [Crossref] [PubMed]
  3. T. Okoshi, “Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays,” Appl. Opt. 10, 2284–2291 (1971).
    [Crossref] [PubMed]
  4. S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” The 2001 Stereoscopic Displays and Applications Conference, Photonics West, Proc. SPIE 4297, San Jose, CA, Jan. 2001, pp. 187–195.
  5. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820 (2002).
    [Crossref]
  6. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensionaltwo-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734–2736 (2004).
    [Crossref] [PubMed]
  7. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
    [Crossref] [PubMed]
  8. S.-H. Shin and B. Javidi, “Speckle reduced three-dimensional volume holographic display using integral imaging,” Appl. Opt. 41, 2644–2649 (2002).
    [Crossref] [PubMed]
  9. Y. Frauel and B. Javidi, “Digital three-dimensional image correlation by use of computer-reconstructed integral imaging,” Appl. Opt. 41, 5488–5496 (2002).
    [Crossref] [PubMed]
  10. S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
    [Crossref]
  11. T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8, 255–262 (2001).
    [Crossref] [PubMed]
  12. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Integral imaging with improved depth of field by use of amplitude-modulated microlens arrays,” Appl. Opt. 43, 5806–5813 (2004).
    [Crossref] [PubMed]
  13. J.-H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging,” Opt. Express 13, 1875–1884 (2005).
    [Crossref] [PubMed]
  14. H. Choi, J.-H. Park, J. Kim, S.-W. Cho, and B. Lee, “Wide-viewing-angle 3D/2D convertible display system uing two display devices and a lens array,” Opt. Express 13, 8424-8432 (2005).
    [Crossref] [PubMed]
  15. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
    [Crossref]
  16. M. Martínez-Corral and B. Javidi, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13, 9175–9180 (2005).
    [Crossref] [PubMed]
  17. S.-W. Min, J. Hong, and B. Lee, “Analysis of an optical depth converter used in a three-dimensional integral imaging system,” Appl. Optics,  43, 4539–4549 (2004).
    [Crossref]

2005 (5)

2004 (3)

2002 (3)

2001 (3)

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

T. Naemura, T. Yoshida, and H. Harashima, “3-D computer graphics based on integral photography,” Opt. Express 8, 255–262 (2001).
[Crossref] [PubMed]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” The 2001 Stereoscopic Displays and Applications Conference, Photonics West, Proc. SPIE 4297, San Jose, CA, Jan. 2001, pp. 187–195.

1997 (1)

1971 (1)

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad, Sci. 146, 446–451 (1908).

Aggoun, A.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Arai, J.

Cho, S.-W.

Choi, H.

Davies, N.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Frauel, Y.

Harashima, H.

Hong, J.

S.-W. Min, J. Hong, and B. Lee, “Analysis of an optical depth converter used in a three-dimensional integral imaging system,” Appl. Optics,  43, 4539–4549 (2004).
[Crossref]

J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensionaltwo-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29, 2734–2736 (2004).
[Crossref] [PubMed]

Hoshino, H.

Javidi, B.

Jung, S.

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
[Crossref] [PubMed]

B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820 (2002).
[Crossref]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” The 2001 Stereoscopic Displays and Applications Conference, Photonics West, Proc. SPIE 4297, San Jose, CA, Jan. 2001, pp. 187–195.

Kim, H.-R.

Kim, J.

Kim, Y.

Kung, S. Y.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Lee, B.

Lee, S.-D.

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad, Sci. 146, 446–451 (1908).

Manolache, S.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Martínez-Corral, M.

Martínez-Cuenca, R.

McCormick, M.

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Min, S.-W.

Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552(2005).
[Crossref] [PubMed]

S.-W. Min, J. Hong, and B. Lee, “Analysis of an optical depth converter used in a three-dimensional integral imaging system,” Appl. Optics,  43, 4539–4549 (2004).
[Crossref]

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” The 2001 Stereoscopic Displays and Applications Conference, Photonics West, Proc. SPIE 4297, San Jose, CA, Jan. 2001, pp. 187–195.

Naemura, T.

Okano, F.

Okoshi, T.

Park, J.-H.

Saavedra, G.

Shin, S.-H.

Yoshida, T.

Yuyama, I.

Appl. Opt. (6)

Appl. Optics (1)

S.-W. Min, J. Hong, and B. Lee, “Analysis of an optical depth converter used in a three-dimensional integral imaging system,” Appl. Optics,  43, 4539–4549 (2004).
[Crossref]

C. R. Acad, Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad, Sci. 146, 446–451 (1908).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. A. (1)

S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a threedimensional integral image recording system that uses circular and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A. 18, 1814–1821 (2001).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

The 2001 Stereoscopic Displays and Applications Conference, Photonics West, Proc. SPIE (1)

S.-W. Min, S. Jung, J.-H. Park, and B. Lee, “Three-dimensional display system based on computer-generated integral photography,” The 2001 Stereoscopic Displays and Applications Conference, Photonics West, Proc. SPIE 4297, San Jose, CA, Jan. 2001, pp. 187–195.

Supplementary Material (1)

» Media 1: MOV (2549 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The principles of the previous 3D-2D convertible method.

Fig. 2.
Fig. 2.

Generation of point light sources from a pinhole array and a normal BLU.

Fig. 3.
Fig. 3.

The structure of a pinhole array on a polarizer in (a) 3D mode and (b) 2D mode.

Fig. 4.
Fig. 4.

The principles of the proposed method.

Fig. 5.
Fig. 5.

The principles of the 3D mode in detail.

Fig. 6.
Fig. 6.

The side view of the experimental setup.

Fig. 7.
Fig. 7.

The 3D images displayed by the proposed system.

Fig. 8.
Fig. 8.

The 2D images displayed by the proposed method: (a) a landscape, (b) a flower.

Fig. 9.
Fig. 9.

Movie of conversion between the 3D and the 2D modes (2.54MB).

Fig. 10.
Fig. 10.

The PAP in (a) the 3D mode and (b) the 2D mode.

Metrics