Abstract

A dual-channel holographic recording technique and its corresponding memory scheme in the cationic ring-opening photopolymer are presented. In the dual-channel technique, a pair of holograms are recorded simultaneously with two orthogonal polarization channels in the common volume of the material, and are reconstructed concurrently with negligible inter-channel crosstalk. The grating strengths of these two channels are investigated and the relevant parameters for equal diffraction intensity readout are optimized. Combining the dual-channel technique with speckle shift multiplexing, a high-density holographic memory is realized. This dual-channel scheme enables the users to interact with the storage medium from an additional channel. The simultaneous nature of the two channels also offers a faster data transfer rate in both the recording and reading processes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
  2. L. d’Auria, J. P. Huignard, and E. Epitz, "holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Mag. 9, 83-94 (1973).
    [CrossRef]
  3. F.H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate," Opt. Lett. 18, 915-917 (1993).
    [CrossRef] [PubMed]
  4. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, "Holographic storage using shift multiplexing," Opt. Lett. 20, 782-784 (1995).
    [CrossRef] [PubMed]
  5. A.M. Darskii and V.B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. 65, 392-395 (1988).
  6. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, "Holographic storage of multiplex high-capacity digital data pages in thick photopolymer systems," Opt. Lett. 23, 1710-1712 (1998).
    [CrossRef]
  7. G.A. Rakuljic, V. Levya, and A. Yariv, "Optical data storage by using orthogonal wavelength-multiplexed tunable diode-laser," Opt. Lett. 17, 1471-1473 (1992).
    [CrossRef] [PubMed]
  8. S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
    [CrossRef]
  9. W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, "polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
    [CrossRef]
  10. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, "Polarization holography. 3: Some applications of polarization holographic recording," Appl. Opt. 24, 785-788 (1985).
    [CrossRef] [PubMed]
  11. W.D. Koek, N. Bhattacharya, and J.J.M. Braat, "Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin," Opt. Lett. 29, 101-103 (2004).
    [CrossRef] [PubMed]
  12. YP. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
    [CrossRef]
  13. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," in Diffractive and Holographic Optical Technology III, I. Cindrich, and S. H. Lee, Eds., Proc. SPIE 2689, 127-141 (1996).
  14. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, "High-transfer-rate high-capacity holographic disk data-storage system," Appl. Opt. 43, 4902-4914 (2004).
    [CrossRef] [PubMed]
  15. L. Paraschis and L. Hesselink, "Properties of compositional volume grating recording in photopolymers," in International Symposium on Nonlinear Optics. IEEE, 72-74 (1998).
  16. L. Paraschis, Y. Sugiyama, and L. Hesselink, "Physical properties of volume holographic recording utilizing photo-initiated polymerization for nonvolatile digital data storage," in Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Coufal, and G. T. Sincerbox, Eds., Proc. SPIE 3802, 72-83 (1999).
    [CrossRef]
  17. G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
    [CrossRef]
  18. S. Piazzolla and B. K. Jenkins, "Holographic grating formation in photopolymer," Opt. Lett. 21, 1075-1077 (1996).
    [CrossRef] [PubMed]
  19. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947(1969).
  20. For the detail information of Aprilis media properties, http://www.aprilisinc.com/Aprilils media product sheet.pdf.
  21. D. Papazoglou, M. Loulakis, G. Siganakis, and N. Vainos, "Holographic read - write projector of video images," Opt. Express 10, 280-285 (2002)
    [PubMed]

2004

2003

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, "polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

2002

2001

YP. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

1998

1996

1995

1994

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

1993

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

F.H. Mok, "Angle-multiplexed storage of 5000 holograms in lithium niobate," Opt. Lett. 18, 915-917 (1993).
[CrossRef] [PubMed]

1992

1988

A.M. Darskii and V.B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. 65, 392-395 (1988).

1985

1973

L. d’Auria, J. P. Huignard, and E. Epitz, "holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Mag. 9, 83-94 (1973).
[CrossRef]

1969

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947(1969).

Barbastathis, G.

Bhattacharya, N.

Bjornson, E.

Boyd, C.

Braat, J.J.M.

Buse, K.

YP. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

Campbell, S.

Chiou, A.E.T.

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, "polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

Curtis, K.

d’Auria, L.

L. d’Auria, J. P. Huignard, and E. Epitz, "holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Mag. 9, 83-94 (1973).
[CrossRef]

Darskii, A.M.

A.M. Darskii and V.B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. 65, 392-395 (1988).

Dhar, L.

Epitz, E.

L. d’Auria, J. P. Huignard, and E. Epitz, "holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Mag. 9, 83-94 (1973).
[CrossRef]

Harris, A.

Hesselink, L.

Hill, A.

Huignard, J. P.

L. d’Auria, J. P. Huignard, and E. Epitz, "holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Mag. 9, 83-94 (1973).
[CrossRef]

Jenkins, B. K.

Koek, W.D.

Kogelnik, H.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947(1969).

Kukhtarev, N.

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, "polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

Kwan, D.

Levene, M.

Levinos, N.

Levya, V.

Loulakis, M.

Markov, V.B.

A.M. Darskii and V.B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. 65, 392-395 (1988).

Mok, F.H.

Mouroulis, P.

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Nee, I.

YP. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

Nikolova, L.

Okas, R.

Orlov, S. S.

Papazoglou, D.

Phillips, W.

Piazzolla, S.

Psaltis, D.

YP. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, "Holographic storage using shift multiplexing," Opt. Lett. 20, 782-784 (1995).
[CrossRef] [PubMed]

Pu, A.

Rakuljic, G.A.

Schilling, M.

Siganakis, G.

Snyder, R.

Stoyanova, K.

Su, W.

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, "polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

Sun, C.

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, "polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

Sundaram, P.

Tackitt, M.

Takashima, Y.

Todorov, T.

Tomova, N.

Vainos, N.

Wen, M.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Wilson, W.

Yang, YP.

YP. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

Yariv, A.

Yin, S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Yu, F.T.S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zang, Y.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhang, J.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhao, F.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Zhao, G.

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Zhou, H.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

YP. Yang, I. Nee, K. Buse, and D. Psaltis, "Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals," Appl. Phys. Lett. 78, 4076-4078 (2001).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947(1969).

IEEE Trans. Mag.

L. d’Auria, J. P. Huignard, and E. Epitz, "holographic read-write memory and capacity enhancement by 3-D storage," IEEE Trans. Mag. 9, 83-94 (1973).
[CrossRef]

J. Mod. Opt.

G. Zhao and P. Mouroulis, "Diffusion model of hologram formation in dry photopolymer materials," J. Mod. Opt. 41, 1929-1939 (1994).
[CrossRef]

Opt. Commun.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, "Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser," Opt. Commun. 101, 317-321 (1993).
[CrossRef]

Opt. Eng.

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, "polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry," Opt. Eng. 42, 9-10 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Spectrosc.

A.M. Darskii and V.B. Markov, "Shift selectivity of holograms with a reference speckle wave," Opt. Spectrosc. 65, 392-395 (1988).

Other

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, "Cationic ring-opening photopolymerimization methods for volume hologram recording," in Diffractive and Holographic Optical Technology III, I. Cindrich, and S. H. Lee, Eds., Proc. SPIE 2689, 127-141 (1996).

L. Paraschis and L. Hesselink, "Properties of compositional volume grating recording in photopolymers," in International Symposium on Nonlinear Optics. IEEE, 72-74 (1998).

L. Paraschis, Y. Sugiyama, and L. Hesselink, "Physical properties of volume holographic recording utilizing photo-initiated polymerization for nonvolatile digital data storage," in Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Coufal, and G. T. Sincerbox, Eds., Proc. SPIE 3802, 72-83 (1999).
[CrossRef]

H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).

For the detail information of Aprilis media properties, http://www.aprilisinc.com/Aprilils media product sheet.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig.1. .
Fig.1. .

eometry of the dual-channel holographic recording by plane waves in a photopolymer: d, thickness of the photopolymer medium; PBS, polarizing beam splitter; E rp (r), E op (r), E rs (r), and E os (r), electric fields of the recording beams; θp and θs , incidence angles of the reference beams in the medium. Here the subscript symbols: o, object beam; r, reference beam; p, p-polarization (in the x-z plane) recording channel (shows in blue); s, s-polarization (along the direction of the y-axis) recording channel (shows in red).

Fig. 2.
Fig. 2.

Grating evolutions during dual-channel holographic recording

Fig. 3.
Fig. 3.

Experimental setup for dual data-channel holographic memory: DPL, diode-pumped solid-state laser; HP, half-wave plate; PBS, polarizing beam splitter; SF, spatial filter; EL, beam-expanding lens; QP, quarter-wave plate; D, diffuser; SLM, spatial light modulator; FL, Fourier transfer Lens; WP, wedge prism; L, lens; M, mirror; HMC, holographic media card; CCD, charge coupled device.

Fig. 4.
Fig. 4.

(a).Shift selectivity of a hologram recorded using speckle shift multiplexing in dual-channel system. (b). Readout of 30 holograms per channel superimposed by speckle shift multiplexing.

Fig. 5.
Fig. 5.

Readout pages in dual data-channel holographic memory: (a) p-channel data page; (b) s-channel data page; (c) the overlapped p- and s-channel data pages without PBS4.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n p ( t ) = 2 α M E rp E op cos ( θ p ) I 0 · ( 1 exp { γ [ 1 exp ( t τ ) ] } ) ,
Δ n s ( t ) = 2 α M E rs E os I 0 · ( 1 exp { γ [ 1 exp ( t τ ) ] } ) ,
ν p ( t ) = [ π cos ( θ bp ) d ( λ cos ( θ bp ) ) ] · Δ n p ( t ) ,
ν s ( t ) = [ π d ( λ cos ( θ bs ) ) ] · Δ n s ( t ) ,
ν ( t ) = arcsin ( η ( t ) ) = arcsin ( I d ( t ) ( I d ( t ) + I t ( t ) ) ) ,

Metrics