Abstract

A dual-channel holographic recording technique and its corresponding memory scheme in the cationic ring-opening photopolymer are presented. In the dual-channel technique, a pair of holograms are recorded simultaneously with two orthogonal polarization channels in the common volume of the material, and are reconstructed concurrently with negligible inter-channel crosstalk. The grating strengths of these two channels are investigated and the relevant parameters for equal diffraction intensity readout are optimized. Combining the dual-channel technique with speckle shift multiplexing, a high-density holographic memory is realized. This dual-channel scheme enables the users to interact with the storage medium from an additional channel. The simultaneous nature of the two channels also offers a faster data transfer rate in both the recording and reading processes.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).
  2. L. d’Auria, J. P. Huignard, and E. Epitz, “holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Mag. 9, 83–94 (1973).
    [CrossRef]
  3. F.H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
    [CrossRef] [PubMed]
  4. D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
    [CrossRef] [PubMed]
  5. A.M. Darskii and V.B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. 65, 392–395 (1988).
  6. L. Dhar, K. Curtis, M. Tackitt, M. Schilling, S. Campbell, W. Wilson, A. Hill, C. Boyd, N. Levinos, and A. Harris, “Holographic storage of multiplex high-capacity digital data pages in thick photopolymer systems,” Opt. Lett. 23, 1710–1712 (1998).
    [CrossRef]
  7. G.A. Rakuljic, V. Levya, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed tunable diode-laser,” Opt. Lett. 17, 1471–1473 (1992).
    [CrossRef] [PubMed]
  8. S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
    [CrossRef]
  9. W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, “polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry,” Opt. Eng. 42, 9–10 (2003).
    [CrossRef]
  10. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization holography. 3: Some applications of polarization holographic recording,” Appl. Opt. 24, 785–788 (1985).
    [CrossRef] [PubMed]
  11. W.D. Koek, N. Bhattacharya, and J.J.M. Braat, “Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin,” Opt. Lett. 29, 101–103 (2004).
    [CrossRef] [PubMed]
  12. YP. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
    [CrossRef]
  13. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).
  14. S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
    [CrossRef] [PubMed]
  15. L. Paraschis and L. Hesselink, “Properties of compositional volume grating recording in photopolymers,” in International Symposium on Nonlinear Optics. IEEE, 72–74 (1998).
  16. L. Paraschis, Y. Sugiyama, and L. Hesselink, “Physical properties of volume holographic recording utilizing photo-initiated polymerization for nonvolatile digital data storage,” in Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Coufal, and G. T. Sincerbox, Eds., Proc. SPIE3802, 72–83 (1999).
    [CrossRef]
  17. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
    [CrossRef]
  18. S. Piazzolla and B. K. Jenkins, “Holographic grating formation in photopolymer,” Opt. Lett. 21, 1075–1077 (1996).
    [CrossRef] [PubMed]
  19. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947(1969).
  20. For the detail information of Aprilis media properties, http://www.aprilisinc.com/Aprilils media product sheet.pdf.
  21. D. Papazoglou, M. Loulakis, G. Siganakis, and N. Vainos, “Holographic read - write projector of video images,” Opt. Express 10, 280–285 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-6-280.
    [PubMed]

2004 (2)

2003 (1)

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, “polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry,” Opt. Eng. 42, 9–10 (2003).
[CrossRef]

2002 (1)

2001 (1)

YP. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

1998 (1)

1996 (1)

1995 (1)

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

1993 (2)

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

F.H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915–917 (1993).
[CrossRef] [PubMed]

1992 (1)

1988 (1)

A.M. Darskii and V.B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. 65, 392–395 (1988).

1985 (1)

1973 (1)

L. d’Auria, J. P. Huignard, and E. Epitz, “holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Mag. 9, 83–94 (1973).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947(1969).

Barbastathis, G.

Bhattacharya, N.

Bjornson, E.

Boyd, C.

Braat, J.J.M.

Buse, K.

YP. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

Campbell, S.

Chiou, A.E.T.

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, “polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry,” Opt. Eng. 42, 9–10 (2003).
[CrossRef]

Curtis, K.

d’Auria, L.

L. d’Auria, J. P. Huignard, and E. Epitz, “holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Mag. 9, 83–94 (1973).
[CrossRef]

Darskii, A.M.

A.M. Darskii and V.B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. 65, 392–395 (1988).

Dhal, P. K.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).

Dhar, L.

Epitz, E.

L. d’Auria, J. P. Huignard, and E. Epitz, “holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Mag. 9, 83–94 (1973).
[CrossRef]

Harris, A.

Hesselink, L.

S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
[CrossRef] [PubMed]

L. Paraschis, Y. Sugiyama, and L. Hesselink, “Physical properties of volume holographic recording utilizing photo-initiated polymerization for nonvolatile digital data storage,” in Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Coufal, and G. T. Sincerbox, Eds., Proc. SPIE3802, 72–83 (1999).
[CrossRef]

L. Paraschis and L. Hesselink, “Properties of compositional volume grating recording in photopolymers,” in International Symposium on Nonlinear Optics. IEEE, 72–74 (1998).

Hill, A.

Horner, M. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).

Huignard, J. P.

L. d’Auria, J. P. Huignard, and E. Epitz, “holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Mag. 9, 83–94 (1973).
[CrossRef]

Ingwall, R. T.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).

Jenkins, B. K.

Koek, W.D.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947(1969).

Kolb, E. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).

Kukhtarev, N.

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, “polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry,” Opt. Eng. 42, 9–10 (2003).
[CrossRef]

Kwan, D.

Levene, M.

Levinos, N.

Levya, V.

Li, H.-Y. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).

Loulakis, M.

Markov, V.B.

A.M. Darskii and V.B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. 65, 392–395 (1988).

Minns, R. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).

Mok, F.H.

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Nee, I.

YP. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

Nikolova, L.

Okas, R.

Orlov, S. S.

Papazoglou, D.

Paraschis, L.

L. Paraschis, Y. Sugiyama, and L. Hesselink, “Physical properties of volume holographic recording utilizing photo-initiated polymerization for nonvolatile digital data storage,” in Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Coufal, and G. T. Sincerbox, Eds., Proc. SPIE3802, 72–83 (1999).
[CrossRef]

L. Paraschis and L. Hesselink, “Properties of compositional volume grating recording in photopolymers,” in International Symposium on Nonlinear Optics. IEEE, 72–74 (1998).

Phillips, W.

Piazzolla, S.

Psaltis, D.

YP. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

D. Psaltis, M. Levene, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782–784 (1995).
[CrossRef] [PubMed]

Pu, A.

Rakuljic, G.A.

Schild, H. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).

Schilling, M.

Siganakis, G.

Snyder, R.

Stoyanova, K.

Su, W.

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, “polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry,” Opt. Eng. 42, 9–10 (2003).
[CrossRef]

Sugiyama, Y.

L. Paraschis, Y. Sugiyama, and L. Hesselink, “Physical properties of volume holographic recording utilizing photo-initiated polymerization for nonvolatile digital data storage,” in Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Coufal, and G. T. Sincerbox, Eds., Proc. SPIE3802, 72–83 (1999).
[CrossRef]

Sun, C.

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, “polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry,” Opt. Eng. 42, 9–10 (2003).
[CrossRef]

Sundaram, P.

Tackitt, M.

Takashima, Y.

Todorov, T.

Tomova, N.

Vainos, N.

Waldman, D. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).

Wen, M.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Wilson, W.

Yang, YP.

YP. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

Yariv, A.

Yin, S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Yu, F.T.S.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Zang, Y.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Zhang, J.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Zhao, F.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Zhou, H.

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

YP. Yang, I. Nee, K. Buse, and D. Psaltis, “Ionic and electronic dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947(1969).

IEEE Trans. Mag. (1)

L. d’Auria, J. P. Huignard, and E. Epitz, “holographic read-write memory and capacity enhancement by 3-D storage,” IEEE Trans. Mag. 9, 83–94 (1973).
[CrossRef]

J. Mod. Opt. (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994).
[CrossRef]

Opt. Commun. (1)

S. Yin, H. Zhou, F. Zhao, M. Wen, Y. Zang, J. Zhang, and F.T.S. Yu, “Wavelength-multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode-laser,” Opt. Commun. 101, 317–321 (1993).
[CrossRef]

Opt. Eng. (1)

W. Su, C. Sun, N. Kukhtarev, and A.E.T. Chiou, “polarization-multiplexed volume holograms in LiNbO3 with 90-deg geometry,” Opt. Eng. 42, 9–10 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Opt. Spectrosc. (1)

A.M. Darskii and V.B. Markov, “Shift selectivity of holograms with a reference speckle wave,” Opt. Spectrosc. 65, 392–395 (1988).

Other (5)

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optical Technology III, I. Cindrich and S. H. Lee, Eds., Proc. SPIE 2689, 127–141 (1996).

L. Paraschis and L. Hesselink, “Properties of compositional volume grating recording in photopolymers,” in International Symposium on Nonlinear Optics. IEEE, 72–74 (1998).

L. Paraschis, Y. Sugiyama, and L. Hesselink, “Physical properties of volume holographic recording utilizing photo-initiated polymerization for nonvolatile digital data storage,” in Advanced Optical Data Storage: Materials, Systems, and Interfaces to Computers, P. A. Mitkas, Z. U. Hasan, H. J. Coufal, and G. T. Sincerbox, Eds., Proc. SPIE3802, 72–83 (1999).
[CrossRef]

H.J. Coufal, D. Psaltis, and G.T. Sincerbox, eds., Holographic Data Storage, Vol. 76 of Springer Series in Optical Sciences (Springer-Verlag, Berlin, 2000).

For the detail information of Aprilis media properties, http://www.aprilisinc.com/Aprilils media product sheet.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig.1. .
Fig.1. .

eometry of the dual-channel holographic recording by plane waves in a photopolymer: d, thickness of the photopolymer medium; PBS, polarizing beam splitter; E rp (r), E op (r), E rs (r), and E os (r), electric fields of the recording beams; θp and θs , incidence angles of the reference beams in the medium. Here the subscript symbols: o, object beam; r, reference beam; p, p-polarization (in the x-z plane) recording channel (shows in blue); s, s-polarization (along the direction of the y-axis) recording channel (shows in red).

Fig. 2.
Fig. 2.

Grating evolutions during dual-channel holographic recording

Fig. 3.
Fig. 3.

Experimental setup for dual data-channel holographic memory: DPL, diode-pumped solid-state laser; HP, half-wave plate; PBS, polarizing beam splitter; SF, spatial filter; EL, beam-expanding lens; QP, quarter-wave plate; D, diffuser; SLM, spatial light modulator; FL, Fourier transfer Lens; WP, wedge prism; L, lens; M, mirror; HMC, holographic media card; CCD, charge coupled device.

Fig. 4.
Fig. 4.

(a).Shift selectivity of a hologram recorded using speckle shift multiplexing in dual-channel system. (b). Readout of 30 holograms per channel superimposed by speckle shift multiplexing.

Fig. 5.
Fig. 5.

Readout pages in dual data-channel holographic memory: (a) p-channel data page; (b) s-channel data page; (c) the overlapped p- and s-channel data pages without PBS4.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ n p ( t ) = 2 α M E rp E op cos ( θ p ) I 0 · ( 1 exp { γ [ 1 exp ( t τ ) ] } ) ,
Δ n s ( t ) = 2 α M E rs E os I 0 · ( 1 exp { γ [ 1 exp ( t τ ) ] } ) ,
ν p ( t ) = [ π cos ( θ bp ) d ( λ cos ( θ bp ) ) ] · Δ n p ( t ) ,
ν s ( t ) = [ π d ( λ cos ( θ bs ) ) ] · Δ n s ( t ) ,
ν ( t ) = arcsin ( η ( t ) ) = arcsin ( I d ( t ) ( I d ( t ) + I t ( t ) ) ) ,

Metrics