Abstract

Large thickness is required in holographic recording materials to be used as holographic memories. Photopolymers have proved to be a good alternative to construct holographic memories. Nevertheless, modeling the behavior of thick layers poses some problems due to high absorption of the dye, as discussed in previous papers. In this study, the gratings stored in photopolymers based on polyvinylalcohol/acrylamide (PVA/AA) are analyzed considering the attenuation of light in depth. This is done by fitting the theoretical results, predicted by a model that considers this effect, to the experimental results obtained using diffraction gratings recorded in PVA/AA based photopolymer. In order to determine the diffraction efficiency at the first Bragg angle, an algorithm based on the rigorous coupled wave theory is used. Also, the characteristics of the gratings obtained using different recording intensities are analyzed, and the effective optical thickness is seen to increase as the intensity is increased.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939(1994).
    [CrossRef]
  2. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
    [CrossRef]
  3. S. Piazzolla and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
    [CrossRef]
  4. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
    [CrossRef]
  5. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427–3435 (2002).
    [CrossRef] [PubMed]
  6. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
    [CrossRef]
  7. Q. Huang and P. R. Asheley, “Holographyc Bragg gratings input-output couplers for a polymer waveguide at an 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
    [CrossRef] [PubMed]
  8. S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of high-efficiency volume gratings couplers for line focusing,” Appl. Opt. 37, 2278–2287 (1998).
    [CrossRef]
  9. H. J. Zhou, V. Morozov, and J. Neff, “Characterization of DuPont photopolymers in infrared light for free-space optical interconnects,” Appl. Opt. 34, 7457–7459 (1995).
    [CrossRef] [PubMed]
  10. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, New York, 2000).
  11. A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003).
    [CrossRef] [PubMed]
  12. I. V. Kityk, J. Kasperczyk, B. Sahraoui, M. F. Yasinskii, and B. Holan, “Low temperature anomalies in polyvinyl alcohol photoplymers,” Polymer 38, 4803–4806 (1997).
    [CrossRef]
  13. A. S. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39, 2964–2974 (2000).
    [CrossRef]
  14. D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE 5216, 10–25 (2003).
  15. W. L. Wilson et al., “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE 5216, 178–179 (2003).
  16. S. S. Orlov, W. Philips, E. Bjormson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
    [CrossRef] [PubMed]
  17. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. S. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44, 3197–3207 (2005).
    [CrossRef] [PubMed]
  18. M. Dubois, X. Shi, C. Erben, L. Longley, E. P. Boden, and B. L. Lawrence, “Characterization of microholograms recorded in a thermoplastics medium for three-dimensional optical data storage,” Opt. Lett. 30, 1947–1949 (2005).
    [CrossRef] [PubMed]
  19. B. Yao, M. Lei, L. Ren, N. Menke, and Y. Wang, “Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films,” Opt. Lett. 30, 3060–3062 (2005).
    [CrossRef] [PubMed]
  20. S. R. Guntaka, V. Toal, and S. Martin, “Holographically recorded photopolymer diffractive optical element for holographic and electronic speckle-pattern interferometry,” Appl. Opt. 41, 7475–7449 (2002).
    [CrossRef] [PubMed]
  21. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
    [CrossRef]
  22. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008–7012 (2003).
    [CrossRef] [PubMed]
  23. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 131939–1950 (2005).
    [CrossRef] [PubMed]
  24. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
    [CrossRef] [PubMed]
  25. J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–406 (2005).
    [CrossRef]
  26. I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
    [CrossRef]
  27. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
    [CrossRef] [PubMed]
  28. S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
    [CrossRef] [PubMed]
  29. C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004).
    [CrossRef]
  30. C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
    [CrossRef] [PubMed]
  31. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]

2005 (7)

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. S. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44, 3197–3207 (2005).
[CrossRef] [PubMed]

M. Dubois, X. Shi, C. Erben, L. Longley, E. P. Boden, and B. L. Lawrence, “Characterization of microholograms recorded in a thermoplastics medium for three-dimensional optical data storage,” Opt. Lett. 30, 1947–1949 (2005).
[CrossRef] [PubMed]

B. Yao, M. Lei, L. Ren, N. Menke, and Y. Wang, “Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films,” Opt. Lett. 30, 3060–3062 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 131939–1950 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–406 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

2004 (3)

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004).
[CrossRef]

S. S. Orlov, W. Philips, E. Bjormson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
[CrossRef] [PubMed]

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

2003 (5)

2002 (2)

2000 (3)

A. S. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39, 2964–2974 (2000).
[CrossRef]

S. Piazzolla and B. K. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147–1157 (2000).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[CrossRef]

1998 (2)

S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of high-efficiency volume gratings couplers for line focusing,” Appl. Opt. 37, 2278–2287 (1998).
[CrossRef]

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

1997 (3)

Q. Huang and P. R. Asheley, “Holographyc Bragg gratings input-output couplers for a polymer waveguide at an 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
[CrossRef] [PubMed]

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[CrossRef]

I. V. Kityk, J. Kasperczyk, B. Sahraoui, M. F. Yasinskii, and B. Holan, “Low temperature anomalies in polyvinyl alcohol photoplymers,” Polymer 38, 4803–4806 (1997).
[CrossRef]

1995 (2)

1994 (1)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939(1994).
[CrossRef]

Asheley, P. R.

Aubrecht, I.

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Bablumian, A. S.

A. S. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39, 2964–2974 (2000).
[CrossRef]

Beléndez, A.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 131939–1950 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[CrossRef] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[CrossRef] [PubMed]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[CrossRef] [PubMed]

Bjormson, E.

Boden, E. P.

Bunning, T. J.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

Butler, C. J.

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE 5216, 10–25 (2003).

Close, C. E.

Daiber, A. J.

Dubois, M.

Erben, C.

Gallego, S.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–406 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 131939–1950 (2005).
[CrossRef] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[CrossRef] [PubMed]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003).
[CrossRef] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008–7012 (2003).
[CrossRef] [PubMed]

García, C.

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008–7012 (2003).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

Gaylord, T. K.

Gleeson, M. R.

Glytsis, E. N.

Grann, E. B.

Guntaka, S. R.

Hesselink, L.

Holan, B.

I. V. Kityk, J. Kasperczyk, B. Sahraoui, M. F. Yasinskii, and B. Holan, “Low temperature anomalies in polyvinyl alcohol photoplymers,” Polymer 38, 4803–4806 (1997).
[CrossRef]

Huang, Q.

Jenkins, B. K.

Jost, P.

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Kasperczyk, J.

I. V. Kityk, J. Kasperczyk, B. Sahraoui, M. F. Yasinskii, and B. Holan, “Low temperature anomalies in polyvinyl alcohol photoplymers,” Polymer 38, 4803–4806 (1997).
[CrossRef]

Kelly, J. V.

Kityk, I. V.

I. V. Kityk, J. Kasperczyk, B. Sahraoui, M. F. Yasinskii, and B. Holan, “Low temperature anomalies in polyvinyl alcohol photoplymers,” Polymer 38, 4803–4806 (1997).
[CrossRef]

Koudela, I.

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Krile, T.

A. S. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39, 2964–2974 (2000).
[CrossRef]

Kwan, D.

Lavielle, L.

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Lawrence, B. L.

Lawrence, J. R.

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[CrossRef]

Lei, M.

Lion, Y.

Longley, L.

Lougnot, J.

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Márquez, A.

Martin, S.

McDonald, M. E.

McLeod, R. R.

Menke, N.

Miller, M.

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

Moharam, M. G.

Moreau, V.

Morozov, V.

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939(1994).
[CrossRef]

Natarajan, L. V.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

Neff, J.

Neipp, C.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 131939–1950 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–406 (2005).
[CrossRef]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[CrossRef] [PubMed]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008–7012 (2003).
[CrossRef] [PubMed]

O’ Neill, F. T.

O’Neill, F. T.

Okas, R.

Orlov, S. S.

Ortuño, M.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 131939–1950 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–406 (2005).
[CrossRef]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008–7012 (2003).
[CrossRef] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[CrossRef] [PubMed]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003).
[CrossRef] [PubMed]

Pascual, I.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 131939–1950 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[CrossRef] [PubMed]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003).
[CrossRef] [PubMed]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008–7012 (2003).
[CrossRef] [PubMed]

Philips, W.

Piazzolla, S.

Pommet, D. A.

Raguin, D. H

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE 5216, 10–25 (2003).

Ren, L.

Renotte, Y.

Robertson, T. L.

Sahraoui, B.

I. V. Kityk, J. Kasperczyk, B. Sahraoui, M. F. Yasinskii, and B. Holan, “Low temperature anomalies in polyvinyl alcohol photoplymers,” Polymer 38, 4803–4806 (1997).
[CrossRef]

Schultz, S. M.

Sheridan, J. T.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “3 Dimensional analysis of holographic photopolymers based memories,” Opt. Express 13, 3543–3554 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 131939–1950 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’ Neill, C. Neipp, S. Gallego, M. Ortuño, and J. T. Sheridan, “Holographic photopolymer materials: non-local polymerisation driven diffusion under non-ideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–406 (2005).
[CrossRef]

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004).
[CrossRef]

C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, I. Pascual, and J. T. Sheridan “Angular responses of the first and second diffracted orders in transmission diffraction grating recorded on photopolymer material,” Opt. Express 11, 1835–1843 (2003).
[CrossRef] [PubMed]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[CrossRef]

Shi, X.

Slagle, T. S.

Snyder, R.

Sochava, S. L.

Sundaram, P.

Sutherland, R. L.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

Takashima, Y.

Toal, V.

Tondiglia, V. P.

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

Waldman, D. A.

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE 5216, 10–25 (2003).

Wang, Y.

Wilson, W. L.

W. L. Wilson et al., “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE 5216, 178–179 (2003).

Yao, B.

Yasinskii, M. F.

I. V. Kityk, J. Kasperczyk, B. Sahraoui, M. F. Yasinskii, and B. Holan, “Low temperature anomalies in polyvinyl alcohol photoplymers,” Polymer 38, 4803–4806 (1997).
[CrossRef]

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939(1994).
[CrossRef]

Zhou, H. J.

Appl. Opt. (9)

Q. Huang and P. R. Asheley, “Holographyc Bragg gratings input-output couplers for a polymer waveguide at an 850-nm wavelength,” Appl. Opt. 36, 1198–1203 (1997).
[CrossRef] [PubMed]

S. M. Schultz, E. N. Glytsis, and T. K. Gaylord, “Design of high-efficiency volume gratings couplers for line focusing,” Appl. Opt. 37, 2278–2287 (1998).
[CrossRef]

H. J. Zhou, V. Morozov, and J. Neff, “Characterization of DuPont photopolymers in infrared light for free-space optical interconnects,” Appl. Opt. 34, 7457–7459 (1995).
[CrossRef] [PubMed]

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427–3435 (2002).
[CrossRef] [PubMed]

S. S. Orlov, W. Philips, E. Bjormson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902–4914 (2004).
[CrossRef] [PubMed]

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. S. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44, 3197–3207 (2005).
[CrossRef] [PubMed]

S. R. Guntaka, V. Toal, and S. Martin, “Holographically recorded photopolymer diffractive optical element for holographic and electronic speckle-pattern interferometry,” Appl. Opt. 41, 7475–7449 (2002).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008–7012 (2003).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Márquez, A. Beléndez, and I. Pascual, “Diffusion based model to predict the conservation of holographic gratings recorded in PVA/Acrylamide photopolymer,” Appl. Opt. 42, 5839–5845 (2003).
[CrossRef] [PubMed]

Appl. Phys. B (1)

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851–857 (2003).
[CrossRef]

J. Appl. Phys. (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, and T. J. Bunning, “Phenomenological model of anisotropic volume hologram formation in liquid-crystal-photopolymer mixtures,” J. Appl. Phys. 96, 951–965 (2004).
[CrossRef]

J. Mod. Opt. (2)

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymers materials,” J. Mod. Opt. 41, 1929–1939(1994).
[CrossRef]

I. Aubrecht, M. Miller, and I. Koudela, “Recording of holographic gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998).
[CrossRef]

J. Opt. Soc. Am. A (2)

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
[CrossRef]

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1008–1014 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

C. Neipp, J. T. Sheridan, S. Gallego, M. Ortuño, I. Pascual, and A. Beléndez, “Effect of a depth attenuated refractive index profile in the angular responses of the efficiency of higher orders in volume gratings recorded in a PVA/Acrylamide photopolymer,” Opt. Commun. 233, 311–322 (2004).
[CrossRef]

Opt. Eng. (1)

A. S. Bablumian and T. Krile, “Multiplexed holograms in thick bacteriorhodopsin films for optical memory/interconnections,” Opt. Eng. 39, 2964–2974 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Polymer (1)

I. V. Kityk, J. Kasperczyk, B. Sahraoui, M. F. Yasinskii, and B. Holan, “Low temperature anomalies in polyvinyl alcohol photoplymers,” Polymer 38, 4803–4806 (1997).
[CrossRef]

Pure and Appl. Opt. (1)

J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording: VI. Some Basic ideas for modelling the kinetics of the recording process,” Pure and Appl. Opt. 6, 225–245 (1997).
[CrossRef]

Other (3)

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, New York, 2000).

D. A. Waldman, C. J. Butler, and D. H Raguin, “CROP holographic storage media for optical data storage at grater than 100 bits/µm2,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE 5216, 10–25 (2003).

W. L. Wilson et al., “Realization of high-performance holographic data storage: the InPhase Technologies demonstration platform,” in Organic Holographic Materials and Applications, K. Meerholz, ed., Proc. SPIE 5216, 178–179 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diffraction efficiency (DE) versus exposure time for one grating with a physical thickness of 900 µm, the experimental data (white dots) and the simulations using the theoretical model for different thicknesses (1000 µm, 800 µm, 600 µm, 300 µm and 100 µm).

Fig. 2.
Fig. 2.

Diffraction efficiency (DE) as a function of replay angle for the grating presented in Figure 1 (900 µm of physical thickness and spatial frequency of 1125 lines/mm). Experimental (o), algorithm using diffusion model (—).

Fig. 3.
Fig. 3.

Refractive index modulation, n 1, as function of the thickness and the exposure time for two different recording intensities: 2 mW/cm2 and 20 mW/cm2

Fig. 4.
Fig. 4.

Angular responses for two different recording intensities: 2 mW/cm2 and 20 mW/cm2.

Tables (1)

Tables Icon

Table 1. Parameters of the gratings recorded using different intensities.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

[ M ] ( x , z , t ) t = x D ( t ) [ M ] ( x , z , t ) x k R ( t ) I γ ( x , z , t ) [ M ] ( x , z , t ) + z D ( t ) [ M ] ( x , z , t ) z
[ P ] ( x , z , t ) t = k R ( t ) I γ ( x , z , t ) [ M ] ( x , z , t )
I ( x , z , t ) = I 0 [ 1 + cos ( 2 π x Λ ) ] exp [ α ( t ) z ]
α ( t ) = α 0 exp ( K α I 0 β t )
k R ( t ) = k R exp ( φ I 0 γ t )
D ( t ) = D 0 exp ( φ I 0 γ t )
[M](x,z,t) x >> [M](x,z,t) z
d = g = 1 G d g
n 1 = ( n dark 2 + 2 ) 2 6 n dark [ ( n m 2 1 n m 2 + 2 n b 2 1 n b 2 + 2 ) [ M ] 1 + ( n p 2 1 n p 2 + 2 n b 2 1 n b 2 + 2 ) [ P ] 1 ]
n g ( z ) = n g 0 + n g 1 ( z ) cos ( Kx ) + n g 2 ( z ) cos ( 2 Kx ) + n g 3 ( z ) cos ( 3 Kx )
ε ± i = n 0 n i for i = 1 , 2 , 3

Metrics