Abstract

This paper proposes a novel service differentiation mechanism utilizing optical buffers in transparent optical networks. We first introduce fiber delay line (FDL)-based optical buffers and propose a hybrid shared optical buffered node. Based on the proposed buffer, diverse service requirements can be satisfied by assigning different priorities on accessing the buffer. Since the blocking performance is affected by the basic delay unit of FDL represented by a ratio of the burst length, this paper also takes into account the effect of the burst assembly process on the buffer performance. By dynamically adjusting the burst length under the changing traffic load, optimal performance of the proposed optical buffer can be achieved. Our simulation results show that diverse service requirements can be satisfied in terms of burst blocking probability and buffering delay time.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Xiong, M. Vandenhoute and H. C. Cankaya, "Control Architecture in Optical Burst-Switched WDM Networks," IEEE J. Sel. Areas Commun. 18, 1838-1851 (2000).
    [CrossRef]
  2. M. Yoo and C. Qiao, "QoS performance in IP over WDMnetworks" IEEE J. Sel. Areas Commun. 18, 2062-2071 (2000).
    [CrossRef]
  3. J. Y. Wei and R. I. McFarland, "Just-In-Time signaling for WDMoptical burst switching networks," J. Lightwave Technol. 18, 2019-2037 (2000).
    [CrossRef]
  4. J. Turner, "Terabit burst switching," Journal of High Speed Network 18, 3-16 (1999).
  5. S. Oh, H. Hong and M. Kang, "A Data Burst Assembly Algorithm in Optical Burst Switching Networks," ETRI Journal 24, 311-322 (2002)
    [CrossRef]
  6. C. M. Gauger, "Optimized combination of converter pools and FDL buffers for contention resolution in optical burst switching," Photonic Network Communications, Kluwer Academic Publisher, 139-148 (2004).
  7. K. Merchant, J. McGeehan, A. Willner, S. Ovadia, P. Kamath, J. Touch and J. Bannister, "Performance Evaluation of a Router with Tunnable Recirculating Buffers in an Optical Burst Switching Environment," in Proc. Of BROADNET’04 (2004).
  8. C. Hsu, T. Liu and N. Huang, "Performance analysis of deflection routing in optical burst-switched network," in Proc. of IEEE Infocom’02, 66-73 (2002).
  9. V. M. Vokkarane and J. P. Jue, "Prioritized Burst Segmentation and Composite Burst Assembly Techniques for QoS Support in Optical Burst-Switched Networks," IEEE J. Sel. Areas Commun.,  21, 1198-1209 (2003).
    [CrossRef]
  10. Y. Chen,M. Hamid, and D. H. K. Tsang, "Proportional QoS over OBS Networks," in Proc. of IEEE Globecom’01, 1510-1514 (2001).
  11. S. C. Kim, J. S. Choi, and M. Kang, "Providing absolute differentiated services for optical burst switching networks: loss differentiation," in Proceedings of IEE 152, 439-446 (2005).
    [CrossRef]
  12. F. Callegati, "Optical Buffers for Variable Length Packets," IEEE Comm. Letters 4, 292-294 (2004).
    [CrossRef]
  13. T. Zhang, K. Lu, and J. P. Jue, "An Analytical Model for Shared Fiber-Delay Line Buffers in Asynchronous Optical Packet and Burst Switches," in Proc. of IEEE ICC’05, 1636-1640 (2005).
  14. C. M. Gauger, Dimensioning of FDL Buffers for Optical Burst Switching Nodes, Proc. of Optical Network Design and Modeling Conference (ONDM’02), 2002.
  15. J. Y. Choi, J. S. Choi, and M. Kang, "Dimensioning Burst Assembly Process in Optical Burst Switched Networks," IEICE Transaction on Communication E88-B, 3855-3863 (2005).</jrn>
    [CrossRef]

2004

F. Callegati, "Optical Buffers for Variable Length Packets," IEEE Comm. Letters 4, 292-294 (2004).
[CrossRef]

2003

V. M. Vokkarane and J. P. Jue, "Prioritized Burst Segmentation and Composite Burst Assembly Techniques for QoS Support in Optical Burst-Switched Networks," IEEE J. Sel. Areas Commun.,  21, 1198-1209 (2003).
[CrossRef]

2002

S. Oh, H. Hong and M. Kang, "A Data Burst Assembly Algorithm in Optical Burst Switching Networks," ETRI Journal 24, 311-322 (2002)
[CrossRef]

2000

Y. Xiong, M. Vandenhoute and H. C. Cankaya, "Control Architecture in Optical Burst-Switched WDM Networks," IEEE J. Sel. Areas Commun. 18, 1838-1851 (2000).
[CrossRef]

M. Yoo and C. Qiao, "QoS performance in IP over WDMnetworks" IEEE J. Sel. Areas Commun. 18, 2062-2071 (2000).
[CrossRef]

J. Y. Wei and R. I. McFarland, "Just-In-Time signaling for WDMoptical burst switching networks," J. Lightwave Technol. 18, 2019-2037 (2000).
[CrossRef]

1999

J. Turner, "Terabit burst switching," Journal of High Speed Network 18, 3-16 (1999).

Callegati, F.

F. Callegati, "Optical Buffers for Variable Length Packets," IEEE Comm. Letters 4, 292-294 (2004).
[CrossRef]

Cankaya, H. C.

Y. Xiong, M. Vandenhoute and H. C. Cankaya, "Control Architecture in Optical Burst-Switched WDM Networks," IEEE J. Sel. Areas Commun. 18, 1838-1851 (2000).
[CrossRef]

Hong, H.

S. Oh, H. Hong and M. Kang, "A Data Burst Assembly Algorithm in Optical Burst Switching Networks," ETRI Journal 24, 311-322 (2002)
[CrossRef]

Jue, J. P.

V. M. Vokkarane and J. P. Jue, "Prioritized Burst Segmentation and Composite Burst Assembly Techniques for QoS Support in Optical Burst-Switched Networks," IEEE J. Sel. Areas Commun.,  21, 1198-1209 (2003).
[CrossRef]

Kang, M.

S. Oh, H. Hong and M. Kang, "A Data Burst Assembly Algorithm in Optical Burst Switching Networks," ETRI Journal 24, 311-322 (2002)
[CrossRef]

McFarland, R. I.

Oh, S.

S. Oh, H. Hong and M. Kang, "A Data Burst Assembly Algorithm in Optical Burst Switching Networks," ETRI Journal 24, 311-322 (2002)
[CrossRef]

Qiao, C.

M. Yoo and C. Qiao, "QoS performance in IP over WDMnetworks" IEEE J. Sel. Areas Commun. 18, 2062-2071 (2000).
[CrossRef]

Turner, J.

J. Turner, "Terabit burst switching," Journal of High Speed Network 18, 3-16 (1999).

Vandenhoute, M.

Y. Xiong, M. Vandenhoute and H. C. Cankaya, "Control Architecture in Optical Burst-Switched WDM Networks," IEEE J. Sel. Areas Commun. 18, 1838-1851 (2000).
[CrossRef]

Vokkarane, V. M.

V. M. Vokkarane and J. P. Jue, "Prioritized Burst Segmentation and Composite Burst Assembly Techniques for QoS Support in Optical Burst-Switched Networks," IEEE J. Sel. Areas Commun.,  21, 1198-1209 (2003).
[CrossRef]

Wei, J. Y.

Xiong, Y.

Y. Xiong, M. Vandenhoute and H. C. Cankaya, "Control Architecture in Optical Burst-Switched WDM Networks," IEEE J. Sel. Areas Commun. 18, 1838-1851 (2000).
[CrossRef]

Yoo, M.

M. Yoo and C. Qiao, "QoS performance in IP over WDMnetworks" IEEE J. Sel. Areas Commun. 18, 2062-2071 (2000).
[CrossRef]

ETRI Journal

S. Oh, H. Hong and M. Kang, "A Data Burst Assembly Algorithm in Optical Burst Switching Networks," ETRI Journal 24, 311-322 (2002)
[CrossRef]

IEEE Comm. Letters

F. Callegati, "Optical Buffers for Variable Length Packets," IEEE Comm. Letters 4, 292-294 (2004).
[CrossRef]

IEEE J. Sel. Areas Commun.

V. M. Vokkarane and J. P. Jue, "Prioritized Burst Segmentation and Composite Burst Assembly Techniques for QoS Support in Optical Burst-Switched Networks," IEEE J. Sel. Areas Commun.,  21, 1198-1209 (2003).
[CrossRef]

Y. Xiong, M. Vandenhoute and H. C. Cankaya, "Control Architecture in Optical Burst-Switched WDM Networks," IEEE J. Sel. Areas Commun. 18, 1838-1851 (2000).
[CrossRef]

M. Yoo and C. Qiao, "QoS performance in IP over WDMnetworks" IEEE J. Sel. Areas Commun. 18, 2062-2071 (2000).
[CrossRef]

J. Lightwave Technol.

Journal of High Speed Network

J. Turner, "Terabit burst switching," Journal of High Speed Network 18, 3-16 (1999).

Other

C. M. Gauger, "Optimized combination of converter pools and FDL buffers for contention resolution in optical burst switching," Photonic Network Communications, Kluwer Academic Publisher, 139-148 (2004).

K. Merchant, J. McGeehan, A. Willner, S. Ovadia, P. Kamath, J. Touch and J. Bannister, "Performance Evaluation of a Router with Tunnable Recirculating Buffers in an Optical Burst Switching Environment," in Proc. Of BROADNET’04 (2004).

C. Hsu, T. Liu and N. Huang, "Performance analysis of deflection routing in optical burst-switched network," in Proc. of IEEE Infocom’02, 66-73 (2002).

Y. Chen,M. Hamid, and D. H. K. Tsang, "Proportional QoS over OBS Networks," in Proc. of IEEE Globecom’01, 1510-1514 (2001).

S. C. Kim, J. S. Choi, and M. Kang, "Providing absolute differentiated services for optical burst switching networks: loss differentiation," in Proceedings of IEE 152, 439-446 (2005).
[CrossRef]

T. Zhang, K. Lu, and J. P. Jue, "An Analytical Model for Shared Fiber-Delay Line Buffers in Asynchronous Optical Packet and Burst Switches," in Proc. of IEEE ICC’05, 1636-1640 (2005).

C. M. Gauger, Dimensioning of FDL Buffers for Optical Burst Switching Nodes, Proc. of Optical Network Design and Modeling Conference (ONDM’02), 2002.

J. Y. Choi, J. S. Choi, and M. Kang, "Dimensioning Burst Assembly Process in Optical Burst Switched Networks," IEICE Transaction on Communication E88-B, 3855-3863 (2005).</jrn>
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

A hybrid shared optical buffered optical switching system

Fig. 2.
Fig. 2.

Procedure of the proposed service differentiation mechanism

Fig. 3.
Fig. 3.

Burst blocking probability for optical buffers with PreRes

Fig. 4.
Fig. 4.

Burst blocking probability for optical buffers with PostRes

Fig. 5.
Fig. 5.

Buffering delay time of optical buffers with PreRes

Fig. 6.
Fig. 6.

Buffering delay time of optical buffers with PostRes

Fig. 7.
Fig. 7.

Results of service differentiation at offered load 0.5

Fig. 8.
Fig. 8.

Results of service differentiation with the burst length adjustment

Tables (3)

Tables Icon

Table 1. Features of optical buffers using fiber delay lines (M: number of ports, W: number of wavelengths in a port, B: number of FDLs, R: maximum allowable number of recirculations, and D: granularity of FDLs)

Tables Icon

Table 2. Four service classes and their applications

Tables Icon

Table 3. Adjusted burst length reflecting the optimal granularity at different offered load

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L ̂ B = L B * D F D O

Metrics