Abstract

In nonlinear optical frequency conversion process, it is desirable to maximize the product of the intensity of pump laser and the interaction length in order to achieve maximum conversion efficiency. In this paper, long and unbroken submicron-diameter optical fibers with low optical loss about 0.1dB/cm were fabricated with a new drawing process by heating the conventional single mode fiber using a designed electric strip heater. Pumped by a 532 nm mode-locked pico-second laser, enhanced SRS phenomena can be observed in the submicron-diameter fibers with relative low pump power.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Govind P. Agrawal, Nonlinear Fiber Optics, 3rd Edition and Applications of Nonlinear Fiber Optics, (Academic, Publishing House of Electronics Industry, Beijing, 2002).
  2. R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, "A high-efficiency tunable cw Raman oscillator," Appl. Phys. Lett. 30, 162-164 (1977).
    [CrossRef]
  3. H. Masuda and S. Kawai, "Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier," IEEE Photon. Technol. Lett. 11, 818-820 (1999).
    [CrossRef]
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25 -27(2000).
    [CrossRef]
  6. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett. 11, 674-676 (1999).
    [CrossRef]
  7. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation in tapered fibers," Opt. Lett. 25, 1415-1417 (2000).
    [CrossRef]
  8. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth and P. St.J. Russell, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004).
    [CrossRef] [PubMed]
  9. T. E. Dimmick, G. Kakarantzas, T. A. Birk, and P. St. J. Russell, "Carborn dioxide laser fabrication of fused-fiber couplers and tapers," Appl. Opt. 38, 6845-6848 (1999).
    [CrossRef]
  10. L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  11. J. Bures, and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A 16, 1992-1996 (1999).
    [CrossRef]
  12. M. Cai, and K. Vahala, "Highly efficient hybrid fiber taper coupled microsphere laser.Opt. Lett. 26, 884-886 (2001).
    [CrossRef]
  13. J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, "Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers," Adv. Mater. 15, 70-73 (2003).
    [CrossRef]
  14. Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, "Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires," J. Am. Chem. Soc. 124, 1817-1822 (2002).
    [CrossRef] [PubMed]
  15. Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, "Silica nanotubes and nanofiber arrays," Adv. Mater. 12, 1938-1940 (2000).
    [CrossRef]
  16. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
    [CrossRef] [PubMed]
  17. M. A. Foster, K. D. Moll, and AlexanderL. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004).
    [CrossRef] [PubMed]

2004 (3)

2003 (2)

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, "Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers," Adv. Mater. 15, 70-73 (2003).
[CrossRef]

2002 (1)

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, "Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires," J. Am. Chem. Soc. 124, 1817-1822 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (3)

1999 (4)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

H. Masuda and S. Kawai, "Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier," IEEE Photon. Technol. Lett. 11, 818-820 (1999).
[CrossRef]

T. E. Dimmick, G. Kakarantzas, T. A. Birk, and P. St. J. Russell, "Carborn dioxide laser fabrication of fused-fiber couplers and tapers," Appl. Opt. 38, 6845-6848 (1999).
[CrossRef]

J. Bures, and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A 16, 1992-1996 (1999).
[CrossRef]

1996 (1)

1977 (1)

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, "A high-efficiency tunable cw Raman oscillator," Appl. Phys. Lett. 30, 162-164 (1977).
[CrossRef]

Alexander, K. D.

Ashcom, J. A.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Atkin, D. M.

Birk, T. A.

Birks, T. A.

Bures, J.

Cai, M.

Dai, Z. R.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, "Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires," J. Am. Chem. Soc. 124, 1817-1822 (2002).
[CrossRef] [PubMed]

Dimmick, T. E.

Foster, M. A.

Gao, R. P.

Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, "Silica nanotubes and nanofiber arrays," Adv. Mater. 12, 1938-1940 (2000).
[CrossRef]

Gattas, R. G.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Ghosh, R.

Gole, J. L.

Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, "Silica nanotubes and nanofiber arrays," Adv. Mater. 12, 1938-1940 (2000).
[CrossRef]

He, S.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Hu, J. Q.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, "Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers," Adv. Mater. 15, 70-73 (2003).
[CrossRef]

Jain, R. K.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, "A high-efficiency tunable cw Raman oscillator," Appl. Phys. Lett. 30, 162-164 (1977).
[CrossRef]

Jiang, Y.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, "Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers," Adv. Mater. 15, 70-73 (2003).
[CrossRef]

Kaiser, P.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, "A high-efficiency tunable cw Raman oscillator," Appl. Phys. Lett. 30, 162-164 (1977).
[CrossRef]

Kakarantzas, G.

Kawai, S.

H. Masuda and S. Kawai, "Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier," IEEE Photon. Technol. Lett. 11, 818-820 (1999).
[CrossRef]

Knight, J. C.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

Lee, C. S.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, "Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers," Adv. Mater. 15, 70-73 (2003).
[CrossRef]

Lee, S. T.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, "Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers," Adv. Mater. 15, 70-73 (2003).
[CrossRef]

Leon-Saval, S. G.

Lin, C.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, "A high-efficiency tunable cw Raman oscillator," Appl. Phys. Lett. 30, 162-164 (1977).
[CrossRef]

Lou, J.

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Ma, C.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, "Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires," J. Am. Chem. Soc. 124, 1817-1822 (2002).
[CrossRef] [PubMed]

Masuda, H.

H. Masuda and S. Kawai, "Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier," IEEE Photon. Technol. Lett. 11, 818-820 (1999).
[CrossRef]

Maxwell, I.

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Meng, X. M.

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, "Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers," Adv. Mater. 15, 70-73 (2003).
[CrossRef]

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

Moll, K. D.

Pan, Z. W.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, "Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires," J. Am. Chem. Soc. 124, 1817-1822 (2002).
[CrossRef] [PubMed]

Pleibel, W.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, "A high-efficiency tunable cw Raman oscillator," Appl. Phys. Lett. 30, 162-164 (1977).
[CrossRef]

Ranka, J. K.

Russell, P. St. J.

Russell, P. St.J.

Shen, M

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Stentz, A. J.

Stolen, R. H.

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, "A high-efficiency tunable cw Raman oscillator," Appl. Phys. Lett. 30, 162-164 (1977).
[CrossRef]

Stout, J. D.

Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, "Silica nanotubes and nanofiber arrays," Adv. Mater. 12, 1938-1940 (2000).
[CrossRef]

Tong, L.

L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Vahala, K.

Wadsworth, W. J.

Wang, Z. L.

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, "Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires," J. Am. Chem. Soc. 124, 1817-1822 (2002).
[CrossRef] [PubMed]

Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, "Silica nanotubes and nanofiber arrays," Adv. Mater. 12, 1938-1940 (2000).
[CrossRef]

Windeler, R. S.

Adv. Mater. (2)

J. Q. Hu, X. M. Meng, Y. Jiang, C. S. Lee, and S. T. Lee, "Fabrication of germanium-filled silica nanotubes and aligned silica nanofibers," Adv. Mater. 15, 70-73 (2003).
[CrossRef]

Z. L. Wang, R. P. Gao, J. L. Gole, and J. D. Stout, "Silica nanotubes and nanofiber arrays," Adv. Mater. 12, 1938-1940 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel, and P. Kaiser, "A high-efficiency tunable cw Raman oscillator," Appl. Phys. Lett. 30, 162-164 (1977).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Masuda and S. Kawai, "Wide-band and gain-flattened hybrid fiber amplifier consisting of an EDFA and a multiwavelength pumped Raman amplifier," IEEE Photon. Technol. Lett. 11, 818-820 (1999).
[CrossRef]

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, "Dispersion compensation using single-material fibers," IEEE Photon. Technol. Lett. 11, 674-676 (1999).
[CrossRef]

J. Am. Chem. Soc. (1)

Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, "Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires," J. Am. Chem. Soc. 124, 1817-1822 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nature (1)

L. Tong, R. G. Gattas, J. A. Ashcom, S. He, J. Lou, M Shen, I. Maxwell and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Other (1)

Govind P. Agrawal, Nonlinear Fiber Optics, 3rd Edition and Applications of Nonlinear Fiber Optics, (Academic, Publishing House of Electronics Industry, Beijing, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

A schematic diagram of a resulting tapered fiber, depicting a narrow taper waist connected to untapered fibers by rather long taper transitions.

Fig. 2.
Fig. 2.

A novel experiment setup for fabricating submicron-diameter tapered fibers

Fig. 3.
Fig. 3.

Configuration of the electric strip heater

Fig. 4.
Fig. 4.

SEM image of taper waist with a nominal diameter of 900 nm.

Fig. 5.
Fig. 5.

(a) Spectrum generated by a conventional fiber for diameter, length and average laser power of 125µm, 1m and ~1.5µw. (b) Spectrum generated by taper waists for diameter, length and average laser power of 900 nm, 12cm and ~1.5µw. The whole fiber length is about 1m. (c) Spectrum generated by tapered fiber under the average of 500 scanning times. The parameters of fiber are the same as shown in (b).

Metrics