Abstract

Amplification properties have been compared in Er3+, Er3+/Eu3+ and Er3+/Ce3+ doped tellurite glass fibers using a 980 nm pumping scheme. The pump efficiency has been compared in the 3 types of fibers. Er3+ ion upconversion in bulk glasses and fibers in visible range has been measured and the Er3+ ion IR fluorescence intensity and lifetimes have been recorded to understand the amplification characteristics. Codoping with Ce3+ is more efficient in Er3+ doped tellurite fibre.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187 (1994).
    [CrossRef]
  2. S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
    [CrossRef]
  3. A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 µm Broadband amplification by tellurite-based EDFAs,” Optical Fiber Communication1997, PD1.
  4. T. Nakai, Y. Noda, T. Tani, Y. Mimura, T. Sudo, and S. Ohno , “980nm-pumped Er-doped tellurite-based fiber amplifier,” in Optical Amplifiers and their Applications, D. M. Baney, K. Emura, and J. M. Wiesenfeld, eds., Vol.25 of OSA (Optical Society of American, 1998), pp.82–85.
  5. Y. G. Choi, D. S. Lim, K. H. Kim, D. H. Cho, and J. Heo, “Enhanced 4I11/2→4I13/2 transition rate in Er3+/Ce3+codoped tellurite glasses,” Electron. Lett. 35, 1765–1767 (1999)
    [CrossRef]
  6. Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88, 3832–3839 (2000).
    [CrossRef]
  7. S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fiber amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
    [CrossRef]
  8. C. Strohhofer, P. G. Kik, and A. Polman, “Selective modification of the Er3+4I11/2 branching ratio by energy transfer to Eu3+,” J. Appl. Phys. 88, 4486–4490 (2000).
    [CrossRef]

2003 (1)

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fiber amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[CrossRef]

2002 (1)

S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
[CrossRef]

2000 (2)

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88, 3832–3839 (2000).
[CrossRef]

C. Strohhofer, P. G. Kik, and A. Polman, “Selective modification of the Er3+4I11/2 branching ratio by energy transfer to Eu3+,” J. Appl. Phys. 88, 4486–4490 (2000).
[CrossRef]

1999 (1)

Y. G. Choi, D. S. Lim, K. H. Kim, D. H. Cho, and J. Heo, “Enhanced 4I11/2→4I13/2 transition rate in Er3+/Ce3+codoped tellurite glasses,” Electron. Lett. 35, 1765–1767 (1999)
[CrossRef]

1994 (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187 (1994).
[CrossRef]

Bindra, K

S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
[CrossRef]

Bookey, H. J.

S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
[CrossRef]

Cho, D. H.

Y. G. Choi, D. S. Lim, K. H. Kim, D. H. Cho, and J. Heo, “Enhanced 4I11/2→4I13/2 transition rate in Er3+/Ce3+codoped tellurite glasses,” Electron. Lett. 35, 1765–1767 (1999)
[CrossRef]

Choi, Y. G.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88, 3832–3839 (2000).
[CrossRef]

Y. G. Choi, D. S. Lim, K. H. Kim, D. H. Cho, and J. Heo, “Enhanced 4I11/2→4I13/2 transition rate in Er3+/Ce3+codoped tellurite glasses,” Electron. Lett. 35, 1765–1767 (1999)
[CrossRef]

Heo, J.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88, 3832–3839 (2000).
[CrossRef]

Y. G. Choi, D. S. Lim, K. H. Kim, D. H. Cho, and J. Heo, “Enhanced 4I11/2→4I13/2 transition rate in Er3+/Ce3+codoped tellurite glasses,” Electron. Lett. 35, 1765–1767 (1999)
[CrossRef]

Huang, L.

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fiber amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[CrossRef]

Jha, A

S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
[CrossRef]

Jha, A.

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fiber amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[CrossRef]

Joshi, P.

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fiber amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[CrossRef]

Kar, A. K.

S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
[CrossRef]

Kik, P. G.

C. Strohhofer, P. G. Kik, and A. Polman, “Selective modification of the Er3+4I11/2 branching ratio by energy transfer to Eu3+,” J. Appl. Phys. 88, 4486–4490 (2000).
[CrossRef]

Kim, K. H.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88, 3832–3839 (2000).
[CrossRef]

Y. G. Choi, D. S. Lim, K. H. Kim, D. H. Cho, and J. Heo, “Enhanced 4I11/2→4I13/2 transition rate in Er3+/Ce3+codoped tellurite glasses,” Electron. Lett. 35, 1765–1767 (1999)
[CrossRef]

Lim, D. S.

Y. G. Choi, D. S. Lim, K. H. Kim, D. H. Cho, and J. Heo, “Enhanced 4I11/2→4I13/2 transition rate in Er3+/Ce3+codoped tellurite glasses,” Electron. Lett. 35, 1765–1767 (1999)
[CrossRef]

Liu, X

S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
[CrossRef]

Mimura, Y.

T. Nakai, Y. Noda, T. Tani, Y. Mimura, T. Sudo, and S. Ohno , “980nm-pumped Er-doped tellurite-based fiber amplifier,” in Optical Amplifiers and their Applications, D. M. Baney, K. Emura, and J. M. Wiesenfeld, eds., Vol.25 of OSA (Optical Society of American, 1998), pp.82–85.

Mori, A.

A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 µm Broadband amplification by tellurite-based EDFAs,” Optical Fiber Communication1997, PD1.

Naftaly, M

S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
[CrossRef]

Nakai, T.

T. Nakai, Y. Noda, T. Tani, Y. Mimura, T. Sudo, and S. Ohno , “980nm-pumped Er-doped tellurite-based fiber amplifier,” in Optical Amplifiers and their Applications, D. M. Baney, K. Emura, and J. M. Wiesenfeld, eds., Vol.25 of OSA (Optical Society of American, 1998), pp.82–85.

Nishida, Y.

A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 µm Broadband amplification by tellurite-based EDFAs,” Optical Fiber Communication1997, PD1.

Noda, Y.

T. Nakai, Y. Noda, T. Tani, Y. Mimura, T. Sudo, and S. Ohno , “980nm-pumped Er-doped tellurite-based fiber amplifier,” in Optical Amplifiers and their Applications, D. M. Baney, K. Emura, and J. M. Wiesenfeld, eds., Vol.25 of OSA (Optical Society of American, 1998), pp.82–85.

Ohishi, Y.

A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 µm Broadband amplification by tellurite-based EDFAs,” Optical Fiber Communication1997, PD1.

Ohno, S.

T. Nakai, Y. Noda, T. Tani, Y. Mimura, T. Sudo, and S. Ohno , “980nm-pumped Er-doped tellurite-based fiber amplifier,” in Optical Amplifiers and their Applications, D. M. Baney, K. Emura, and J. M. Wiesenfeld, eds., Vol.25 of OSA (Optical Society of American, 1998), pp.82–85.

Oikawa, K.

A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 µm Broadband amplification by tellurite-based EDFAs,” Optical Fiber Communication1997, PD1.

Ono, H.

A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 µm Broadband amplification by tellurite-based EDFAs,” Optical Fiber Communication1997, PD1.

Park, S. H.

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88, 3832–3839 (2000).
[CrossRef]

Polman, A.

C. Strohhofer, P. G. Kik, and A. Polman, “Selective modification of the Er3+4I11/2 branching ratio by energy transfer to Eu3+,” J. Appl. Phys. 88, 4486–4490 (2000).
[CrossRef]

Shen, S

S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
[CrossRef]

Shen, S.

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fiber amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[CrossRef]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187 (1994).
[CrossRef]

Strohhofer, C.

C. Strohhofer, P. G. Kik, and A. Polman, “Selective modification of the Er3+4I11/2 branching ratio by energy transfer to Eu3+,” J. Appl. Phys. 88, 4486–4490 (2000).
[CrossRef]

Sudo, S.

A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 µm Broadband amplification by tellurite-based EDFAs,” Optical Fiber Communication1997, PD1.

Sudo, T.

T. Nakai, Y. Noda, T. Tani, Y. Mimura, T. Sudo, and S. Ohno , “980nm-pumped Er-doped tellurite-based fiber amplifier,” in Optical Amplifiers and their Applications, D. M. Baney, K. Emura, and J. M. Wiesenfeld, eds., Vol.25 of OSA (Optical Society of American, 1998), pp.82–85.

Tani, T.

T. Nakai, Y. Noda, T. Tani, Y. Mimura, T. Sudo, and S. Ohno , “980nm-pumped Er-doped tellurite-based fiber amplifier,” in Optical Amplifiers and their Applications, D. M. Baney, K. Emura, and J. M. Wiesenfeld, eds., Vol.25 of OSA (Optical Society of American, 1998), pp.82–85.

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187 (1994).
[CrossRef]

Yamada, M.

A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 µm Broadband amplification by tellurite-based EDFAs,” Optical Fiber Communication1997, PD1.

Electron. Lett. (2)

Y. G. Choi, D. S. Lim, K. H. Kim, D. H. Cho, and J. Heo, “Enhanced 4I11/2→4I13/2 transition rate in Er3+/Ce3+codoped tellurite glasses,” Electron. Lett. 35, 1765–1767 (1999)
[CrossRef]

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fiber amplifier pumped at 980 nm,” Electron. Lett. 39, 1797–1799 (2003).
[CrossRef]

J. Am. Ceram. Soc. (1)

S Shen, A Jha, X Liu, M Naftaly, K Bindra, H. J. Bookey, and A. K. Kar, “Tellurite glasses for broadband amplifiers and intigrated optics,” J. Am. Ceram. Soc. 85, 1391–1395 (2002).
[CrossRef]

J. Appl. Phys. (2)

Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo, “Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation,” J. Appl. Phys. 88, 3832–3839 (2000).
[CrossRef]

C. Strohhofer, P. G. Kik, and A. Polman, “Selective modification of the Er3+4I11/2 branching ratio by energy transfer to Eu3+,” J. Appl. Phys. 88, 4486–4490 (2000).
[CrossRef]

Opt. Mater. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, “Tellurite glass: a new candidate for fiber devices,” Opt. Mater. 3, 187 (1994).
[CrossRef]

Other (2)

A. Mori, Y. Ohishi, M. Yamada, H. Ono, Y. Nishida, K. Oikawa, and S. Sudo, “1.5 µm Broadband amplification by tellurite-based EDFAs,” Optical Fiber Communication1997, PD1.

T. Nakai, Y. Noda, T. Tani, Y. Mimura, T. Sudo, and S. Ohno , “980nm-pumped Er-doped tellurite-based fiber amplifier,” in Optical Amplifiers and their Applications, D. M. Baney, K. Emura, and J. M. Wiesenfeld, eds., Vol.25 of OSA (Optical Society of American, 1998), pp.82–85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Energy level diagrams of Er3+, Eu3+ and Ce3+ ions

Fig. 2.
Fig. 2.

Internal gain changes with pump power in Er, ErEu and ErCe fibers. The input signal was at 1534 nm with -15 dBm power. The pump power is the launched power.

Fig. 3.
Fig. 3.

Pump inversion efficiency changes with input signal wavelength in Er, ErEu and ErCe fibers.

Fig. 4.
Fig. 4.

IR fluorescence spectra in Er3+, Er3+/Eu3+ and Er3+/Ce3+ ions doped glasses.

Fig. 5.
Fig. 5.

Er3+ ions fluorescence decay at 1534 nm in Er3+, Er3+/Eu3+ and Er3+/Ce3+ ions doped glasses.

Fig. 6.
Fig. 6.

Er3+ ion upconversion spectra in Er3+, Er3+/Eu3+and Er3+/Ce3+ ions doped bulk glasses (a) and 9cm fibers (b).

Metrics